33 research outputs found

    Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions

    Get PDF
    Manipulation of spin states at the single-atom scale underlies spin-based quantum information processing and spintronic devices. Such applications require protection of the spin states against quantum decoherence due to interactions with the environment. While a single spin is easily disrupted, a coupled-spin system can resist decoherence by employing a subspace of states that is immune to magnetic field fluctuations. Here, we engineered the magnetic interactions between the electron spins of two spin-1/2 atoms to create a clock transition and thus enhance their spin coherence. To construct and electrically access the desired spin structures, we use atom manipulation combined with electron spin resonance (ESR) in a scanning tunneling microscope (STM). We show that a two-level system composed of a singlet state and a triplet state is insensitive to local and global magnetic field noise, resulting in much longer spin coherence times compared with individual atoms. Moreover, the spin decoherence resulting from the interaction with tunneling electrons is markedly reduced by a homodyne readout of ESR. These results demonstrate that atomically-precise spin structures can be designed and assembled to yield enhanced quantum coherence

    Probing quantum coherence in single-atom electron spin resonance

    Get PDF
    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins

    Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries

    Get PDF
    Manganese based layered oxides have received increasing attention as cathode materials for sodium ion batteries due to their high theoretical capacities and good sodium ion conductivities. However, the Jahn–Teller distortion arising from the manganese (III) centers destabilizes the host structure and deteriorates the cycling life. Herein, we report that zinc-doped Na0.833[Li0.25Mn0.75]O2 can not only suppress the Jahn–Teller effect but also reduce the inherent phase separations. The reduction of manganese (III) amount in the zinc-doped sample, as predicted by first-principles calculations, has been confirmed by its high binding energies and the reduced octahedral structural variations. In the viewpoint of thermodynamics, the zinc-doped sample has lower formation energy, more stable ground states, and fewer spinodal decomposition regions than those of the undoped sample, all of which make it charge or discharge without any phase transition. Hence, the zinc-doped sample shows superior cycling performance, demonstrating that zinc doping is an effective strategy for developing high-performance layered cathode materials

    Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface

    Get PDF
    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1=2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1=2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1=2 atoms on surfaces. © 2017 American Physical Society3

    Probing quantum coherence in single-atom electron spin resonance

    Get PDF
    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.We acknowledge financial support from the Office of Naval Research. P.W. acknowledges financial support from the German academic exchange service. P.W., Y.B., and A.J.H. acknowledge support from the Institute for Basic Science under grant IBS-R027-D1. F.D.N. appreciates support from the Swiss National Science Foundation under project number PZ00P2_167965. W.P. thanks the Natural Sciences and Engineering Research Council of Canada for fellowship support. J.F.-R. thanks National Funds through Fundação para a Ciência e a Tecnologia, under project no. PTDC/FIS-NAN/4662/2014 (016656)

    Probing quantum coherence in single-atom electron spin resonance

    Full text link
    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins

    Tuning the Exchange Bias on a Single Atom from 1 mT to 10 T

    Get PDF
    Shrinking spintronic devices to the nanoscale ultimately requires localized control of individual atomic magnetic moments. At these length scales, the exchange interaction plays important roles, such as in the stabilization of spin-quantization axes, the production of spin frustration, and creation of magnetic ordering. Here, we demonstrate the precise control of the exchange bias experienced by a single atom on a surface, covering an energy range of 4 orders of magnitude. The exchange interaction is continuously tunable from milli-eV to micro-eV by adjusting the separation between a spin-1/2 atom on a surface and the magnetic tip of a scanning tunneling microscope. We seamlessly combine inelastic electron tunneling spectroscopy and electron spin resonance to map out the different energy scales. This control of exchange bias over a wide span of energies provides versatile control of spin states, with applications ranging from precise tuning of quantum state properties, to strong exchange bias for local spin doping. In addition, we show that a time-varying exchange interaction generates a localized ac magnetic field that resonantly drives the surface spin. The static and dynamic control of the exchange interaction at the atomic scale provides a new tool to tune the quantum states of coupled-spin systems.We gratefully acknowledge financial support from the Office of Naval Research. W. P. thanks the Natural Sciences and Engineering Research Council of Canada for fellowship support. F. D. N. appreciates support from the Swiss National Science Foundation under Projects No. PZ00P2_167965 and No. PP00P2_176866. A. F. acknowledges CONICET (PIP11220150100327) and FONCyT (PICT-2012-2866). Y. B., P.W., T. C., and A. J.H acknowledge support from Institute for Basic Science IBS-R027-D1. J. L. L. acknowledges support from the ETH Fellowship program. J.F-R. thanks FCT under the project “PTDC/FIS-NAN/4662/2014” as well as Generalitat Valenciana funding Prometeo2017/139 and MINECO Spain (Grant No. MAT2016-78625-C2)

    Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions

    Get PDF
    Manipulation of spin states at the single-atom scale underlies spin-based quantum information processing and spintronic devices. These applications require protection of the spin states against quantum decoherence due to interactions with the environment. While a single spin is easily disrupted, a coupled-spin system can resist decoherence by using a subspace of states that is immune to magnetic field fluctuations. Here, we engineered the magnetic interactions between the electron spins of two spin-1/2 atoms to create a “clock transition” and thus enhance their spin coherence. To construct and electrically access the desired spin structures, we use atom manipulation combined with electron spin resonance (ESR) in a scanning tunneling microscope. We show that a two-level system composed of a singlet state and a triplet state is insensitive to local and global magnetic field noise, resulting in much longer spin coherence times compared with individual atoms. Moreover, the spin decoherence resulting from the interaction with tunneling electrons is markedly reduced by a homodyne readout of ESR. These results demonstrate that atomically precise spin structures can be designed and assembled to yield enhanced quantum coherence. (c) 2018 Authors, Some rights reserved

    Recommendation system with minimized transaction data

    No full text
    This paper deals with the recommendation system in the so-called user-centric payment environment where users, i.e., the payers, can make payments without providing self-information to merchants. This service maintains only the minimum purchase information such as the purchased product names, the time of purchase, the place of purchase for possible refunds or cancellations of purchases. This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service. First, we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data. The recommendation methodology was verified with the real transaction data. Based on the experimental results, we confirmed that the recommendation performance is satisfactory only with the minimum purchase information
    corecore