582 research outputs found

    Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    Full text link
    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hours. Doppler velocities are derived through a single Gaussian fit to the Mg~{\sc{ii}}~k~2796\AA{}~and Si~{\sc{iv}}~1393\AA{}~line profiles. We find coherent and stable red and blue shifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 10410^4 K-10510^5 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.Comment: 14 figures, accepted by Ap

    Effects of life events and attitudes on vehicle transactions: A dynamic Bayesian network approach

    Get PDF
    Individual and household life events are interdependent and influence mobility-related decisions at different levels over time. This paper developed an integrated dynamic model to capture the interdependences among life events, with a special focus on vehicle transactions. Particular attention was paid to the inclusion of vehicles’ characteristics such as the age, fuel type, and size of cars, which are pertinent to emission forecast. A dynamic Bayesian network (DBN), containing individual and household characteristics and latent attitudes toward car ownership and use alongside life events, was employed to study the interdependences. The temporal relationships among life events and lead-lag effects were also captured in the DBN. The longitudinal survey data “the Netherlands Mobility Panel (MPN)” from 2013 to 2018 was used to train and test the DBN. The analysis results confirm the dynamic interdependences between vehicle transactions and other life events and reveal noticeable associations between attitudes and purchase decisions. It is found that several life events (e.g., “Birth of a baby”, “Marital status change”) have concurrent or varied lag-effects on vehicle transaction decisions. The validation indicates that the proposed DBN approach has a high predictive accuracy of vehicle transaction decisions and other life events

    Design of a magnetostrictive sensor for structural health monitoring of non-ferromagnetic plates

    Get PDF
    In this work, a magnetostrictive sensor (MsS) is designed and tested for monitoring damage in a non-ferromagnetic plate. Firstly, the mechanism of the MsS to generate and detect guided shear horizontal (SH) waves in a non-ferromagnetic plate is described. Both theoretical and experimental studies are conducted in order to prove that the sensor can generate the first non-dispersive shear horizontal wave mode (SH0) suitable for monitoring of the structural health. The sensor encompasses a nickel strip, a pair of permanent magnets, C-shaped cores wound by a figure-of-eight coil. The incident wave emitted from the MsS propagates in the plate and is reflected from the plate boundaries. Since the time of the arrival can be determined from the reflected wave signal through signal processing, the velocity of the wave can be extracted. Comparing the calculated velocity with the velocity predicted by the theory, the mode of the wave can be identified with a priori knowledge of plate velocity. To demonstrate the effectiveness of the proposed sensor for structural health monitoring, the location of the damage in an aluminum plate is examined. Finally, optimum design of the sensor is determined using ANSYS program yielding improved sensor performance. The effectiveness of the optimized magnetostrictive sensor is confirmed by experimental results

    Design and Experiment of PZT Network-based Structural Health Monitoring Scanning System

    Get PDF
    AbstractThe active Lamb wave and piezoelectric transducer (PZT)-based structural health monitoring (SHM) technology is a kind of efficient approach to estimate the health state of aircraft structure. In practical applications, PZT networks are needed to monitor large scale structures. Scanning many of the different PZT actuator-sensor channels within these PZT networks to achieve on-line SHM task is important. Based on a peripheral component interconnect extensions for instrumentation (PXI) platform, an active Lamb wave and PZT network-based integrated multi-channel scanning system (PXI-ISS) is developed for the purpose of practical applications of SHM, which is compact and portable, and can scan large numbers of actuator-sensor channels and perform damage assessing automatically. A PXI-based 4 channels gain-programmable charge amplifier, an external scanning module with 276 actuator-sensor channels and integrated SHM software are proposed and discussed in detail. The experimental research on a carbon fiber composite wing box of an unmanned aerial vehicle (UAV) for verifying the functions of the PXI-ISS is mainly discussed, including the design of PZTs layer, the method of excitation frequency selection, functional test of damage imaging, stability test of the PXI-ISS, and the loading effect on signals. The experimental results have verified the stability and damage functions of this system

    Congestion pricing by priority auction

    Get PDF
    This paper analyzes a communication network facing users with a continuous distribution of delay cost per unit time. Priority queueing is often used as a way to provide differential services for users with different delay sensitivities. Delay is a key dimension of network service quality, so priority is a valuable resource which is limited and should to be optimally allocated. We investigate the allocation of priority in queues via a simple bidding mechanism. In our mechanism, arriving users can decide not to enter the network at all or submit an announced delay sensitive value. User entering the network obtains priority over all users who make lower bids, and is charged by a payment function which is designed following an exclusion compensation principle. The payment function is proved to be incentive compatible, so the equilibrium bidding behavior leads to the implementation of "cµ-rule". Social warfare or revenue maximizing by appropriately setting the reserve payment is also analyzed
    corecore