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ABSTRACT 

 

This paper analyzes a communication network facing users with a continuous distribution of delay cost per unit time. 

Priority queueing is often used as a way to provide differential services for users with different delay sensitivities. Delay 

is a key dimension of network service quality, so priority is a valuable resource which is limited and should to be 

optimally allocated. We investigate the allocation of priority in queues via a simple bidding mechanism. In our 

mechanism, arriving users can decide not to enter the network at all or submit an announced delay sensitive value. User 

entering the network obtains priority over all users who make lower bids, and is charged by a payment function which is 

designed following an exclusion compensation principle. The payment function is proved to be incentive compatible, so 

the equilibrium bidding behavior leads to the implementation of “cµ-rule”. Social warfare or revenue maximizing by 

appropriately setting the reserve payment is also analyzed. 
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1. INTRODUCTION 
 
Traditional applications, such as web browsing, file transfer, remote terminal and electronic mail, etc, do not impose 

severe requirements on the network. They can tolerate relatively large packet delays. New Internet applications, such as 

real-time applications such as interactive voice and video are more delay-sensitive. Heterogeneity of the delay 

requirements makes it necessary that different users are handled differently. The emergence of time-critical applications 

on the Internet is one of the primary reasons for customer-oriented service differentiation. On the other hand in order to 

survive in the highly competitive Internet services market, the network service providers will have to provide 

customized network services. Internet is becoming more and more a multi-service network. Clearly, any successful 

solution to supporting multiple services cannot rely on technical solutions only but also has to take into account the 

economic aspects. Corresponding to the best effort service, today the most common charging method in Internet is 

based on the flat-rate model. Given the differentiation of network services, the flat-rate pricing model which is 

commonly applied to charge users for the access service to the Internet Service Providers (ISPs) will become 

inadequate. Without an appropriate pricing scheme, any service differentiation is useless. If there were no price 

difference between the priority classes, all users would prefer the best one.[1][2] 
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Priority queueing is often used as a way to provide differential services for users with different delay sensitivities. When 

a capacity-constrained network service provider faces delay sensitive customers, delay is a key dimension of network 

service quality, so priority is a valuable resource which is limited and should be optimally allocated. Pricing can play an 

important role in the allocation of service capacity and the appropriate determination of priority [3]. Many studies of 

price and service differentiation in priority queueing systems analyze the centralized pricing, where the provider sets an 

incentive compatible price-service menu for finite classes of users. But in settings with many or continuum customers 

whose delay sensitivities are not known to the provider, it may be beneficial to use auctions, where the provider 

allocates priorities and charges corresponding payments based on customers’ bids [4].  

In this paper, we consider a priority queueing system with many infinitesimal users. The main QoS parameter that users 

care about is delay.  Assume there is a continuous distribution of users’ delay cost per unit time. We analyze the 

allocation of priority in queues via a simple bidding mechanism. In our model, the stochastically arriving users are 

privately informed about their own marginal costs of delay which is observed neither by the provider nor by the other 

customers, and arriving customers cannot observe the system state. Arriving users can decide not to enter the network at 

all or submit an announced delay sensitive value. When a user enters the network, he obtains priority over all users 

(waiting in the queue or arriving while he is waiting) who make lower bids, and is charged by a payment function which 

is designed following an exclusion compensation principle. 

Consider the participation constraint, under some conditions users with the highest delay cost values will decide not to 

enter the network, because the service value is not enough to cover its total cost. For the users entering the network, we 

know that it is optimal (minimizing the total delay cost per unite time of users) to schedule them by the so called “cµ-

rule” which provides a higher priority to those users who have a higher marginal delay cost. This rule is implemented by 

the payment function which is proved to be incentive compatible: users entering the network will submit their true delay 

sensitive values. So a user with higher marginal cost submits a higher bid, and higher priority services are allocated to 

the users who are more sensitive to delay. As a result the equilibrium bidding behavior leads to the implementation of 

“cµ-rule”. When allow the network imposing a uniform reverse payment on users who enter the network, Social warfare 

or revenue maximizing can be realized by appropriately setting the reserve payment. 

A number of authors have addressed related issues. Auction motivates lots of research interest in network resources 

allocation and congestion pricing, and several schemes were proposed such as Smart-market Pricing [5], Progressive 

Second Price auction (PSP) [6] and Smart Pay Admission Control (SPAC) [7] mechanism. But these schemes mainly 

focus on the allocation of limited network resource to users not the priority in which agents’ jobs are processed. 

Mendelson and Whang [3] analyze the M/M/1 non-preemptive priority queue with multiple user classes, deriving an 

incentive compatible priority pricing scheme. Mandjes [1] analyzes the incentive compatible problem of data users and 

voice users in computer network when network provides a service with only two priorities. Kleinrock [8] was the first 

one to study the allocation of priorities based on payments, he derived steady-state expected waiting times (which 

depend on the bribes) and studied the resulting queue discipline for various payment functions. Liu [9] revisits 

Kleinrock’s model, but assumes that customers make payments in order to minimize its total cost; he derives a bidding 

equilibrium, and shows that a higher marginal cost leads to a higher bid. Afèche and Mendelson [4] analyze the priority 
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auctions with a generalized delay cost structure. Kittsteiner and Moldovan [10] analyze the bidding strategy that 

depends on processing time. Our analysis is mainly based on Liu’ work, in our model the user’ bid behavior is 

simplified: users only need to decide whether to enter the network and announce their delay values if entering, the 

payment calculation is left to the network, and we focus on the optimal setting of reserve payments to maximize the 

social warfare or revenue, while Liu are more care about optimally setting service speed.   

The remainder of this paper is organized as follows: In Section 2, we describe the basic model of the priority services, a 

payment function is given and proved to be incentive compatible. In section 3 we consider incentive compatible 

payment function when a reverse payment is allowed. We analyze how users entering the network can be regulated by 

reverse payment, and we analyze the problem of social warfare or revenue maximizing by appropriately setting the 

reserve payment. Finally, in Section 4, we conclude the paper with a summary.  

 
2. THE BASIC MODEL 

 

We consider a capacity-constrained network service provider, modeled as an M/M/1 queueing system that serves users 

with differential delay sensitivities. The network service provider distributes a network service which has constant value 

V. Service time obeys an exponential distribution with unit mean. Users which are infinitesimal relative to the market 

size arrive according to a Poisson process. λ is assumed to be the mean arrival rate or market size of users which 

arrive at the network according to a Poisson process.  

Users differ in their delay sensitivities c, the marginal delay cost per unit time. Assume that there is a cumulative 

distribution of delay sensitivities represented by A(c), c∈ [0, cmax]. It’s assumed that A(c) is common knowledge, and is 

continuously differentiable. 

The provider allocates priorities of queues via a simple direct-revelation bidding mechanism. When a user comes to the 

queue he can choose either of two strategies: (1) not to enter the queue at all or (2) submit an announced delay sensitive 

value ĉ   and pay a charge which is decided by a payment function p( ĉ ) (non-revisable and non-refundable) to the 

network. A user who submits ĉ  gets priority over all those with strictly lower values c′ˆ < ĉ , and equal bidders are 

served FIFO. Suppose c ≤cmax is the maximization delay value of users who choose to enter the queue. Following Naor 

[11], the utility of a user with true (marginal delay cost) value c, announced value ĉ  and experiences a delay w is: 

))ˆ(()ˆ,( cwcpVccU +−=      (1) 

From [8] and [9], when users are ranked by their true delay sensitive values (when each user announces ĉ =c in our 

model), the aggregate delay cost of users entering the queue is minimized, and the mean delay of user with delay value c 

is given by 

2))()(1(

1
)(

cAcA
cw

λλ +−
= .     (2) 

Proposition 1. Under above assumptions, the bidding mechanism is incentive compatible and quasi-optimal when the 

payment function is given by 
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dxxwxcp
c

∫ ′−=
ˆ

0
)()ˆ( .      (3) 

Proof: From (3) we have 

)ˆ(ˆ)ˆ( cwccp ′=′ . 

So 

)ˆ()ˆ(

)ˆ()ˆ()ˆ(

cwcc

cwccpcU

′−=
′−′−=′

. 

From (2), )ˆ(cw′  <0, when ĉ >c, )ˆ(cU ′  <0, while when ĉ <c, )ˆ(cU ′  >0, so when ĉ =c, user obtains maximizing 

utility. So users bidding strategies is incentive compatible: 

)ˆ,(),( ccUccU ≥ , ∀ ĉ >0. 

Because users bidding strategies is incentive compatible, and users are ranked by the announcing values, the aggregate 

delay cost of users entering the queue is minimized by the bidding mechanism. Thus the mechanism is quasi-optimal. 

This completes the proof. 

Now the utility of a user with delay value c in the incentive compatible mechanism is:  

))()(()( ccwcpVcU +−=      (4) 

Besides incentive compatible attribute, participation constrain is also important for mechanism design. Because the 

bidding mechanism is incentive compatible, we have 

)(

)()()(

)()()()(

cw

cwccwcwc

cwccwcpcU

−=
′−−′=
′−−′−=′

 

From (2) w(c)>0 , we have U’(c)<0 , so U(c) is a strictly decreasing function over [0, cmax], we have mentioned that 

c ≤cmax is the maximizing value of users who choose to enter the queue. Assume  c&  is the unique solution of 

0))()(( =+− ccwcpV . 

c&  is determined by the mean arrival rate λ and cumulative distribution of c. and we have c = min (cmax, c& ). The 

participation constrain of the bidding mechanism is c≤c . Users with true value c≤c  enter the queue and announce 

ĉ =c, while other users choose not to enter the queue. Thus all users will get nonnegative expected utility. 

By (3), we know that the marginal increase of the payment of a user (with value c) is equal to the resulting decrease of 

his delay cost -cw’(c). Each user’s payment equals his priority externality, the marginal net value losses he inflicts on all 

lower-priority customers. So the intuition behind the payment function is an exclusion compensation principle. A user 

with higher delay sensitivity will submit higher delay sensitive value, and will be scheduled by a higher priority, so 

more users’ mean delay will be inflicted by his enter; as a result he should be charged a higher payment. This pricing 

principal is analogous to the Vickrey-Clarke-Groves mechanism, which is widely used in the allocation of 

interdependent resources. 
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3. OPTIMIZATION OF SETTING RESERVE PAYMENT   
 
In the basic model of section 2, marginal delay value of users entering the network is determined by the mean arrival 

rate λ and cumulative distribution of c. A user with unit delay value c=0 will not be charged any payment. Now we 

assume that the network imposes a uniform reverse payment p  on all users who enter the network (Auction model of 

section 2, can be treated as a special case with p =0). As same as section2, when a user comes to the network he can 

decide not to enter the network at all or submit an announced delay sensitive value ĉ  and pay a charge which is 

decided by a payment function p( ĉ ). Users are also ranked by their announced delay sensitive value. 

Proposition 2. When a reverse payment is charged, the bidding mechanism is incentive compatible and quasi-optimal 

when the payment function is given by 

pdxxwxcp
c

+′−= ∫
ˆ

0
)()ˆ( .     (5) 

Prove of Proposition 2 is similar to Proposition 1, we omit it here. 

Consider the participation constrain U( c& )=0, and c = min (cmax, c& ). Now network service provider can regulate the 

marginal delay value of users by the choice of variable p . When network services provider sets a higher reverse 

payment, marginal delay value will be also higher. So a higher reverse payment leads to fewer users entering the 

network. On the contrary lower reverse payment leads to more users entering the network. Network service provider can 

optimally set the reverse payment to maximize the revenue or the social warfare.  

To simple the analyzing of optimal problems of revenue maximizing or social warfare maximizing, we should get more 

explicit expression of w(c), p(c), and c . We assume c follows a uninformed distribution over [0, cmax]: 

],0[,)( maxccAccA ∈=       (6) 

So Acmax=1. And from (2) we have 

2)1(

1
)(

AccA
cw

λλ +−
=      (7) 

From (5) we have 

p
AccA

c

AccAAcAA

pdxxwxcp
c

+
+−

−
+−

−
−

=

+′−= ∫

2

0

)1()1(

1

)1(

1

)()(

λλλλλλλ

   (8) 

For c= c , we have 

pc
AcAA

cp +−−
−

=
λλλ
1

)1(

1
)(  

For c < cmax, U( c )=0, so 

cVcp −=)(  

From the last two equations we have: 
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)(1 pVA

pV
c

−+
−

=
λ

      (9) 

It can be see that marginal delay value of users entering the network is determined by the mean arrival rate λ and 

cumulative distribution A, and the reserve payment p . When λ and A are fixed, from (9) c  is a decreasing function 

of p . The reverse function of (9) is given by 

cA

c
Vcp

λ−
−=

1
)( .       (10) 

Define the minimizing value of p  as 
min

p  at which exactly all users enter the network. When p >
min

p only some 

users enter the network. By substituting c =cmax and Acmax=1 to (10) we have 

λ−
−=

1
max

min

c
Vp .         

Considering the constraint p ≥0, so when 
min

p <0 and p >0 or when 
min

p >0 and p >
min

p , c  is determined by 

(9). While when 
min

p >0 and 0≤ p ≤
min

p , c =cmax. 

 

3.1 Revenue maximization 

 

Revenue of network service provider consists of the payments obtained from those users who enter the network: 

dccAp
c

∫=Π
0

)(λ .      (11) 

When 
min

p <0 and 0≤ p ≤V, c  is determined by (9), together with (8) we can derive the expression of Π  as a 

function of p . 

A

pVA

pVA

pVAp
pVp

λ
λ

λ
λ ))(1ln(2

)(1

))(1(
)(

−+
−

−+
−+

+−=Π   (12) 

From (12) we can derive the first-order and second-order derivatives of )( pΠ : 

2))(1(

)2(
)(

pVA

pVA
p

−+
−

=Π′
λ

λ
     (13) 

3))(1(

)1(2
)(

pVA

pAA
p

−+
+−

=Π ′′
λ

λλ
     (14) 

Because )( pΠ ′′ <0 so Π  is a strictly concave function of p . And by first order condition )( pΠ′ =0, the network 

service provider gets a maximum when he sets p =V/2. 
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When 
min

p >0, the curve of )( pΠ  have two sections: 0≤ p ≤
min

p and 
min

p < p ≤V. When 0≤ p ≤
min

p , from (8), 

(11) , c =cma and Acmax=1, we obtain 

p
c

c
c

p λ
λ

λ
λ

+−++
−

=Π )1ln(2

1
)( max

max
max     15) 

From (15), we can derive the first-order of )( pΠ : 

λ=Π′ )( p  

So when 0≤ p ≤
min

p , revenue of network service provider can be increased by raising p  till it reach 
min

p . While 

when 
min

p < p ≤V the expression of Π  is given by (12) as same as the situation of 
min

p <0 and 0< p <V. 

From(15),(12), Π  is a linear function over 0≤ p ≤
min

p  , a concave function over 
min

p ≤ p ≤V, and Π  is 

continuous at 
min

p . So when 
min

p ≤V/2, the network service provider gets a maximum when he sets p =V/2, while 

when 
min

p >V/2 the network service provider gets a maximum when he sets p =
min

p . 

 

3.2 Social warfare maximization 

 

Social warfare consists of the aggregate net value of users who enter the network. 

AdcccwV
c

∫ −=Γ
0

))((λ      (16) 

By substituting (7) to (16) we can derive the expression of Γ  as a function of c . 

A

cA
cVcAc

λ
λλ )1ln(

)(
−++=Γ      (17) 

From (12) we can derive the first-order and second-order derivatives of Γ : 

cA
AVc

λ
λ

−
−+=Γ′

1
1

1)(      (18) 

2)1(
)(

cA

A
c

λ
λ

−
−=Γ ′′       (19) 

From (19), we have )(cΓ ′′ <0, Γ  is a strictly concave function of c . 

Consider the situation: 
min

p <0 and 0≤ p ≤V. From (9) we obtain the value of c  corresponding to p =0  

AV

V
c

λ+
=

1
0         
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From (18), we have 0)0( >=Γ′ AVλ . So the maximum of )(cΓ  may obtain at *c =min( 0c  , 1c ), where 1c  is 

obtained by the first-order condition. And from (10) we can obtain the corresponding reserve payment maximizing the 

social warfare. 

Consider the situation of 
min

p >0, the maximum of )(cΓ  also obtain at c*=min(cmax, 
1c ). When *c = cmax the 

corresponding reserve payment could be any value between [0, 
min

p ], while when *c = 1c  we can obtain the 

corresponding reserve payment maximizing the social warfare from (10). 

 
4. CONCLUSIONS 

 

This paper analyzes a communication network facing users with a continuous distribution of delay cost per unit time. 

We solve the problem of how to allocate priorities in queues via a simple bidding mechanism. In our model, arriving 

users can decide not to enter the network at all or submit an announced delay sensitive value. A user obtains priority 

over all users who make lower bids, and is charged by a payment function which is designed following an exclusion 

compensation principle. The payment function is proved to be incentive compatible, so the equilibrium bidding behavior 

leads to the implementation of “cµ-rule”. Social optimization or revenue maximizing by appropriately setting the 

reserve payment is also analyzed. 
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