22,960 research outputs found

    Relativistic Xα–scattered‐wave calculations for the uranyl ion

    Get PDF
    Relativistic Xα–scattered‐wave molecular orbital calculations have been carried out on the uranyl ion UO22+. The calculated orbital eigenvalues are in good agreement with the results of a recent x‐ray photoelectron spectroscopy study of uranyl compounds. An interpretation of the optical spectrum of the uranyl ion in terms of a Hund’s case (c) (ω, ω) coupling scheme is given

    Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils.

    Get PDF
    Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters

    Open-Retrieval Conversational Question Answering

    Full text link
    Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.Comment: Accepted to SIGIR'2

    Laser Generation and Detection of Surface Acoustic Waves Using Gas-Coupled Laser Acoustic Detection

    Get PDF
    Laser generation and detection of ultrasound has the advantage of requiring no mechanical contact with the materials under investigation. We previously reported [1] laser-based measurements on Lamb waves in graphite/polymer composite laminates using a confocal Fabry-Perot interferometer for detection. Related work by other groups includes air-coupled detection of Lamb waves in similar composites using capacitive transducers [2,3] and interferometric detection of Lamb waves in paper [4]. Our earlier work has been extended using Gas-Coupled Laser Acoustic Detection (GCLAD), an economical alternative laser-based method which has the additional advantage that the detection laser beam is not reflected from the sample surface. GCLAD is thus particularly useful for materials with surfaces of poor optical quality. We demonstrate below that the combination of laser generation and GCLAD can be used to obtain well-resolved surface-acoustic waves (SAWs) in a variety of materials, including metals, paper, thin films, and composite pre-preg tape. We also show some preliminary SAW scans obtained with laser generation and GCLAD using metallic samples. Each pixel in the scans represents the strength of a SAW passing through a portion of the sample with an area of about 1 cm2. Scans of this type offer the possibility of economical testing of large sample areas, potentially on-line in a manufacturing environment

    Addition Spectra of Quantum Dots in Strong Magnetic Fields

    Full text link
    We consider the magnetic field dependence of the chemical potential for parabolically confined quantum dots in a strong magnetic field. Approximate expressions based on the notion that the size of a dot is determined by a competition between confinement and interaction energies are shown to be consistent with exact diagonalization studies for small quantum dots. Fine structure is present in the magnetic field dependence which cannot be explained without a full many-body description and is associated with ground-state level crossings as a function of confinement strength or Zeeman interaction strength. Some of this fine structure is associated with precursors of the bulk incompressible states responsible for the fractional quantum Hall effect.Comment: 11 pages, 3 figures (available from [email protected]). Revtex 3.0. (IUCM93-010

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    ANTHROPOMETRIC AND PHYSICAL FITNESS PROFILES OF YOUTH ATHLETES

    Get PDF
    Mason Thieu1, Quincy R. Johnson1,Yang Yang1, Dayton Sealey2, Clay Frels2, Dimitrije Cabarkapa1, & Andrew C. Fry1, FACSM 1University of Kansas, Lawrence, Kansas; 2Department of Kinesiology and Sport Science, University of Nebraska at Kearney, Kearney, Nebraska Youth sports participation, competitiveness, and training intensity continues to increase. However, more information is needed regarding the anthropometric and physical fitness profile of today’s youth athletes. Common strategies for profiling anthropometric and physical fitness characteristics of athletes across their lifespan include the sit and reach (SR), functional movement screen (FMS), isometric mid-thigh pull (IMTP), and the countermovement jump (CMJ) tests. PURPOSE: This study aimed to assess SR, FMS, IMTP, and CMJ performance of youth athletes. METHODS: Youth athletes participating in a community-based strength and conditioning program (male; n=15, age=10.7±0.9, height=157.7±9.2cm, weight=53.2±14.3kg, female; n=6, age=10.2±0.4, height=146.9±8.7cm, weight=40.4±8.2kg) participated in this study. Each athlete performed a SR test, FMS test, two maximum effort IMTPs, and two maximum effort CMJs. Mann-Whitney U Tests (p\u3c0.05) were performed using sex as the grouping variable. RESULTS: Among the variables analyzed, significant differences were found in SR performance (p=0.026), FMS total score (p=0.018), IMTP peak force (p=0.006), and CMJ peak propulsive power (p=0.016) between sexes. The mean ± SD is reported in Table 1. CONCLUSION: Significant differences in anthropometric and physical fitness were observed between male and female youth athletes. While sex differences in anthropometrics have been well reported, the present study provides novel insights on physical fitness data measuring muscular strength and power for youth athletes. These findings can be utilized by coaches, physical educators, strength and conditioning professionals, and sport scientists to better understand the youth athlete population and contribute to their long-term development of athletic qualities

    Exclusonic Quasiparticles and Thermodynamics of Fractional Quantum Hall Liquids

    Full text link
    Quasielectrons and quasiholes in the fractional quantum Hall liquids obey fractional (including nontrivial mutual) exclusion statistics. Their statistics matrix can be determined from several possible state-counting scheme, involving different assumptions on statistical correlations. Thermal activation of quasiparticle pairs and thermodynamic properties of the fractional quantum Hall liquids near fillings 1/m1/m (mm odd) at low temperature are studied in the approximation of generalized ideal gas. The existence of hierarchical states in the fractional quantum Hall effect is shown to be a manifestation of the exclusonic nature of the relevant quasiparticles. For magnetic properties, a paramagnetism-diamagnetism transition appears to be possible at finite temperature.Comment: latex209, REVTE
    • 

    corecore