154 research outputs found

    A simple and novel method to monitor breathing and heart rate in awake and urethane-anesthetized newborn rodents

    Get PDF
    Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week

    Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports

    Full text link
    Multi-object tracking algorithms have made significant advancements due to the recent developments in object detection. However, most existing methods primarily focus on tracking pedestrians or vehicles, which exhibit relatively simple and regular motion patterns. Consequently, there is a scarcity of algorithms that address the tracking of targets with irregular or non-linear motion, such as multi-athlete tracking. Furthermore, popular tracking algorithms often rely on the Kalman filter for object motion modeling, which fails to track objects when their motion contradicts the linear motion assumption of the Kalman filter. Due to this reason, we proposed a novel online and robust multi-object tracking approach, named Iterative Scale-Up ExpansionIoU and Deep Features for multi-object tracking. Unlike conventional methods, we abandon the use of the Kalman filter and propose utilizing the iterative scale-up expansion IoU. This approach achieves superior tracking performance without requiring additional training data or adopting a more robust detector, all while maintaining a lower computational cost compared to other appearance-based methods. Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 75.3% in HOTA. It outperforms all state-of-the-art online tracking algorithms on the SportsMOT dataset, covering various kinds of sport scenarios

    Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex

    Get PDF
    Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activit

    Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases

    Get PDF
    Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses via interaction with its receptor, ST2. Activation of ST2 signalling by IL-33 triggers pleiotropic immune functions in multiple ST2-expressing immune cells, including macrophages, neutrophils, eosinophils, basophils, mast cells, type 2 helper T cells, regulatory T cells, and group 2 innate lymphoid cells. IL-33-mediated effector functions contribute to the tissue inflammatory and reparative responses in various organs including lung, skin, kidney, central nerve system, cardiovascular system, and gastrointestinal system. Endogenous IL-33/ ST2 signaling exhibits diverse immune regulatory functions during progression of different diseases. IL-33 likely functions as a disease sensitizer and plays pathological roles in inflamed tissues in allergic disorders that involve hyperreactive immune responses in the context of skin and pulmonary allergy. However, IL-33 also mediates tissue-protective functions during the recovery phase following tissue injury in the central nerve system and gastrointestinal system. Modulation of the IL-33/ST2 axis, therefore, represents a promising strategy for treating immune disorders that involve dysregulation of the cytokine signalling. In the past two decades, therapeutic strategies blocking IL-33/ST2 have been extensively studied for the treatment of diseases in animal models. In this review, the current progress on the development of therapeutic biologics for targeting IL-33/ST2 signalling in inflammatory diseases is summarized

    Grounded Language-Image Pre-training

    Full text link
    This paper presents a grounded language-image pre-training (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations. GLIP unifies object detection and phrase grounding for pre-training. The unification brings two benefits: 1) it allows GLIP to learn from both detection and grounding data to improve both tasks and bootstrap a good grounding model; 2) GLIP can leverage massive image-text pairs by generating grounding boxes in a self-training fashion, making the learned representation semantic-rich. In our experiments, we pre-train GLIP on 27M grounding data, including 3M human-annotated and 24M web-crawled image-text pairs. The learned representations demonstrate strong zero-shot and few-shot transferability to various object-level recognition tasks. 1) When directly evaluated on COCO and LVIS (without seeing any images in COCO during pre-training), GLIP achieves 49.8 AP and 26.9 AP, respectively, surpassing many supervised baselines. 2) After fine-tuned on COCO, GLIP achieves 60.8 AP on val and 61.5 AP on test-dev, surpassing prior SoTA. 3) When transferred to 13 downstream object detection tasks, a 1-shot GLIP rivals with a fully-supervised Dynamic Head. Code is released at https://github.com/microsoft/GLIP.Comment: CVPR 2022; updated visualizations; fixed hyper-parameters in Appendix C.

    Enhancing Multi-Camera People Tracking with Anchor-Guided Clustering and Spatio-Temporal Consistency ID Re-Assignment

    Full text link
    Multi-camera multiple people tracking has become an increasingly important area of research due to the growing demand for accurate and efficient indoor people tracking systems, particularly in settings such as retail, healthcare centers, and transit hubs. We proposed a novel multi-camera multiple people tracking method that uses anchor-guided clustering for cross-camera re-identification and spatio-temporal consistency for geometry-based cross-camera ID reassigning. Our approach aims to improve the accuracy of tracking by identifying key features that are unique to every individual and utilizing the overlap of views between cameras to predict accurate trajectories without needing the actual camera parameters. The method has demonstrated robustness and effectiveness in handling both synthetic and real-world data. The proposed method is evaluated on CVPR AI City Challenge 2023 dataset, achieving IDF1 of 95.36% with the first-place ranking in the challenge. The code is available at: https://github.com/ipl-uw/AIC23_Track1_UWIPL_ETRI

    Acute Kidney Injury Biomarkers for Patients in a Coronary Care Unit: A Prospective Cohort Study

    Get PDF
    Background: Renal dysfunction is an established predictor of all-cause mortality in intensive care units. This study analyzed the outcomes of coronary care unit (CCU) patients and evaluated several biomarkers of acute kidney injury (AKI), including neutrophil gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18) and cystatin C (CysC) on the first day of CCU admission. Methodology/Principal Findings: Serum and urinary samples collected from 150 patients in the coronary care unit of a tertiary care university hospital between September 2009 and August 2010 were tested for NGAL, IL-18 and CysC. Prospective demographic, clinical and laboratory data were evaluated as predictors of survival in this patient group. The most common cause of CCU admission was acute myocardial infarction (80%). According to Acute Kidney Injury Network criteria, 28.7 % (43/150) of CCU patients had AKI of varying severity. Cumulative survival rates at 6-month follow-up following hospital discharge differed significantly (p,0.05) between patients with AKI versus those without AKI. For predicting AKI, serum CysC displayed an excellent areas under the receiver operating characteristic curve (AUROC) (0.89560.031, p,0.001). The overall 180-day survival rate was 88.7 % (133/150). Multiple Cox logistic regression hazard analysis revealed that urinary NGAL, serum IL-18, Acute Physiology, Age and Chronic Health Evaluation II (APACHE II) and sodium on CCU admission day one were independent risk factors for 6-month mortality. In terms of 6-month mortality, urinary NGAL had the best discriminatory power, the best Youden index, and the highest overall correctness of prediction
    corecore