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Abstract
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive 
immune responses via interaction with its receptor, ST2. Activation of ST2 signalling by IL-
33 triggers pleiotropic immune functions in multiple ST2-expressing immune cells, including 
macrophages, neutrophils, eosinophils, basophils, mast cells, type 2 helper T cells, regulatory 
T cells, and group 2 innate lymphoid cells. IL-33-mediated effector functions contribute to the 
tissue inflammatory and reparative responses in various organs including lung, skin, kidney, 
central nerve system, cardiovascular system, and gastrointestinal system. Endogenous IL-33/
ST2 signaling exhibits diverse immune regulatory functions during progression of different 
diseases. IL-33 likely functions as a disease sensitizer and plays pathological roles in inflamed 
tissues in allergic disorders that involve hyperreactive immune responses in the context of 
skin and pulmonary allergy. However, IL-33 also mediates tissue-protective functions during 
the recovery phase following tissue injury in the central nerve system and gastrointestinal 
system. Modulation of the IL-33/ST2 axis, therefore, represents a promising strategy for 
treating immune disorders that involve dysregulation of the cytokine signalling. In the 
past two decades, therapeutic strategies blocking IL-33/ST2 have been extensively studied 
for the treatment of diseases in animal models. In this review, the current progress on the 
development of therapeutic biologics for targeting IL-33/ST2 signalling in inflammatory 
diseases is summarized.
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Introduction

Cytokines are major mediators of inflammation and contribute to autoimmune diseases. 
Therapeutic targeting of cytokines and their receptors has revolutionized the treatment of 
immune-mediated disorders. More than 90 cytokines and cytokine receptors have been 
identified, some of which are the basis for the current therapeutics on the market [1]. 
Selecting the cytokines to target and, in particular, identifying the cytokines that regulate the 
rate-limiting steps of disease pathways are crucial to the success of such strategies.

Recent studies indicated that interleukin (IL)-33, a member of the IL-1 cytokine family, 
participates in the pathogenesis of various inflammatory diseases, including allergic diseases 
[2, 3], autoimmune diseases [4, 5], infectious diseases [6, 7], and neuropathic pain [8]. 
Targeting IL-33 and its receptor, therefore, has great potential as a new therapeutic strategy 
[9]. In this review, we focus on the pathological roles of IL-33 in inflammatory diseases and 
highlight potential strategies to target IL-33/ST2 signalling.

IL-33 and ST2 signalling

IL-33 is constitutively expressed in epithelial barrier tissues and endothelial cell 
barriers and that the nucleus IL-33 has recently been identified as an alarmin or the damage-
associated molecular patterns (DAMP) [10-12]. The receptor complex for IL-33 consists of 
the specific subunit ST2, which is encoded by the IL1RL1 gene [11, 13]. At least 2 major 
transcription variants of ST2, the full-length transmembrane form (ST2L) and the soluble 
form (sST2), have been identified [14]. sST2 lacks the transmembrane domain and binds to 
IL-33 as a natural decoy receptor [15]. IL-33 activity is negatively regulated by sST2, which 
binds to IL-33 and prevent its activity (Fig. 1a). IL-33 signals through ST2L, which associates 
with IL-1RAcP to induce MyD88-dependent signalling [3]. Stimulation of ST2L elicits the 
recruitment of MyD88, IRAK1, IRAK4, and TRAF6, then activates the downstream NF-κB, JNK, 
p38, and ERK signalling pathways (Fig. 1a). In addition to ST2, the GOLD domain-containing 
protein TMED1 and c-kit have also 
been reported to be involved in IL-
33 signalling [16, 17]. TIR8 (SIGIRR) 
also reportedly negatively regulates 
IL-33-driven allergic responses via 
interaction with ST2 [18].

Activation of ST2 signalling via 
IL-33 triggers pleiotropic immune 
functions in ST2-expressing immune 
cells, which include macrophages, 
neutrophils, eosinophils, basophils, 
mast cells, type 2 T helper cells (Th2), 
group 2 innate lymphoid cells (ILC2s), 
and regulatory T cells (Tregs) [19]. 
IL-33 preferentially activates type 2 
immune responses; it promotes M2 
macrophage polarization, activates 
ILC2s and Th2 cells [20, 21], and 
functions as a disease-sensitizing 
mediator in the pathogenesis of allergic 
disorders, including respiratory 
allergies (asthma and allergic rhinitis) 
and skin allergies (atopic dermatitis) 
[2].

Fig. 1. Current therapeutic strategies targeting IL-33/ST2 
signalling and their putative mechanisms of action. (a) IL-
33 binds to the receptor complex comprised of ST2L and IL-
1RAcP on the cell membrane and induces the recruitment 
of MyD88 and TRAF6, thereby activating the downstream 
NFκB and MAPK pathways. sST2, binding IL-33 as a decoy 
receptor, has been postulated as a biomarker for various 
inflammatory diseases. (b) Three major therapeutic 
biologics for targeting IL-33/ST2 signalling: 1) Anti-IL-33 
monoclonal antibodies, 2) soluble IL-33 receptors, and 3) 
anti-ST2 monoclonal antibodies, all of which interfere with 
the binding of IL-33 to ST2. mAbs, monoclonal antibodies; 
IL-33 Trap, fusion protein of sST2 with the accessory 
protein IL-1RAcP.
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Therapeutic strategies targeting IL-33/ST2 signalling

In the past 2 decades, scientists have made remarkable progress in the development 
of IL-33/ST2 blocking tools (Fig. 1b). IL-33 and ST2 have been drug targets in preclinical 
studies and pharmaceutical pipelines. There are 3 major therapeutic strategies for directly 
blocking the binding of IL-33 to ST2: (1) IL-33 neutralizing antibodies; (2) soluble decoy 
receptors; and (3) anti-ST2 receptor antibodies (Fig. 1b).

Monoclonal antibodies against extracellular cytokines and their receptors have been 
translated from scientific tools to powerful clinical therapeutics with dramatic effects [22]. 
Multiple neutralizing antibodies against IL-33 have been developed by several groups in the 
past 2 decades, which were used in clinical trials for the treatment of allergic diseases. Soluble 
receptor antagonists for IL-33 have also been developed to block the function of free IL-33 
[23]. At least two IL-33 decoy receptors have been developed, including a form of sST2 and 
the IL-33 Trap, a fusion protein formed by sST2 and the accessory protein IL-1RAcP [23]. IL-
33 Trap, generated using a knob-in-hole technology, is comprised of the extracellular cellular 
domains of mouse IL-1RAcP and mouse ST2; it ameliorates the pathology of a mouse model 
of macular disease [23]. Both decoy receptors inhibit IL-33-mediated biological functions 
in vitro and in vivo. Anti-ST2 antibodies are also currently in phase I–II clinical trials for the 
treatment of chronic obstructive pulmonary disease. In addition to the therapeutic benefit 
of blocking IL-33/ST2 signalling, the activation of IL-33 signalling by recombinant IL-33 
is beneficial in certain disease models [24]. Therefore, the administration of exogenous 
IL-33 recombinant protein may be beneficial in patients with these diseases. Below, we 
summarized the beneficial and pathological effects of IL-33/ST2 signalling in inflammatory 
diseases of different organs (Table 1).

Table 1. Role of the IL-33/ST2 axis in inflammatory diseases

Disease model Role of IL-33 Effects of IL-33/ST2 
blockade Strategies Refs 

Pulmonary system     
House dust mite asthma Pathogenic Protective IL-33 vaccination [25] 
Ovalbumin-induced airway inflammation Pathogenic Protective Anti-IL-33, sST2 [26] 
Ovalbumin-induced airway inflammation Pathogenic Protective Adenovirus-sST2  [27] 
Bleomycin-induced pulmonary fibrosis Pathogenic Protective Anti-IL-33 [28] 
Allergic rhinitis Pathogenic Protective Anti-IL-33  [29-31] 
Cigarette smoke-induced lung 
inflammation Pathogenic Protective Anti-IL-33 [32] 
Fungal-induced asthma Pathogenic Protective Anti-ST2  [33] 

Skin     
Food anaphylaxis Pathogenic Protective Anti-ST2, anti-IL-33  [34] 
AD Pathogenic ‒ IL-33 

overexpression  [37] 
AD Pathogenic Protective Anti-IL-33  [38, 39] 
Wound healing Protective ‒ IL-33 [41] 

Cardiovascular system     
TAC Protective Exacerbated in IL1RL1 KO IL-33 [43, 44] 
TAC Protective Exacerbated in IL1RL1 KO IL33 knockout [44, 45] 
Atherosclerosis Protective ‒ IL-33 [46] 
Myocardial infarction Protective Exacerbated in IL1RL1 KO  IL-33 [47] 
Myocardial infarction Protective ‒ IL-33 [48] 
CBV3-induced viral myocarditis Protective ‒ IL33 plasmid  [49] 
CBV3-induced viral myocarditis Pathogenic Protective sST2  [50] 

Kidney     
IRI Pathogenic Protective sST2 [51] 
IRI Protective ‒ IL-2–IL-33 hybrid [54] 
Cisplatin-induced AKI Pathogenic ‒ IL-33 [52] 
Ovalbumin-induced nephrotoxicity Pathogenic ‒ Anti-IL-33  [53] 
Adriamycin-induced glomerulosclerosis Protective ‒ IL-33 [55] 

Gastrointestinal system     
DSS- or TNBS-induced colitis Pathogenic Protective Anti-ST2  [58] 
TNBS-induced IBD Protective ‒ IL-33 [59] 

DSS-induced colitis 
Protective (early phase)  

Pathogenic (recovery 
phase) 

‒ IL-33 [59, 60] 

TNBS-induced colitis Protective ‒ IL-33 [20] 
DSS-induced colitis Protective ‒ IL-33  [61] 

Central nervous system     
Ischaemic stroke Protective ‒ IL-33 [63] 
Ischaemic stroke Protective ‒ IL-33  [62] 
Ischaemic stroke Protective ‒ IL-33 [64] 
Spinal cord injury Protective ‒ IL-33  [65] 
Spinal cord injury Protective ‒ IL-33  [66] 
Alzheimer’s disease model Protective  ‒ IL-33  [66] 
A. cantonensis-induced meningitis Pathogenic Protective Anti-IL-33 [67] 
A. cantonensis-induced meningitis Pathogenic Protective Anti-ST2 [68] 
EAE Protective ‒ IL-33 [69] 
EAE Protective ‒ IL-33 [70] 
EAE Pathogenic Protective Anti-IL-33  [71] 
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Pulmonary diseases
Blockade of IL-33 or ST2 is protective in allergic diseases, especially in the respiratory 

system. In the house dust mite asthma model, vaccination against IL-33 elicits high titres 
of specific anti-IL-33 antibodies and decreases airway hyperresponsiveness, eosinophilia, 
and pulmonary inflammation [25]. Blockade of IL-33 or administration of sST2 before the 
initiation of ovalbumin-induced allergic airway inflammation reduces total cell counts and 
eosinophil counts, as well as the levels of IL-4, IL-5, and IL-13, in the bronchoalveolar lavage 
fluid [26]. Additionally, adenovirus-mediated delivery of sST2 attenuates ovalbumin-induced 
allergic asthma in mice [27].

In the bleomycin-induced pulmonary fibrosis model, IL1RL1 deficiency, anti-IL-33 
antibody treatment, and alveolar macrophage depletion are protective, whereas exogenous 
IL-33 and adoptive transfer of ILC2s exacerbate lung inflammation and fibrosis [28]. Blocking 
IL-33 also has protective effects in experimental allergic rhinitis [29-31]. In a cigarette 
smoke-induced lung inflammation model, anti-IL-33 treatment reduces the infiltration 
of neutrophils and macrophages, as well as lung inflammation [32]. An anti-ST2 antibody 
potentiates CpG-mediated therapeutic effects in a fungal-induced asthma model [33]. In a 
mouse model of food anaphylaxis, IL1RL1 deficiency and ST2 blockade reduce the severity 
of anaphylaxis [34].

In comparison to blockade of only the IL-33/ST2 pathway, the combined inhibition of 
IL-13 and IL-33 results in greater inhibition of type 2 immune responses, as indicated by 
decreased eosinophilia and pulmonary inflammation in a mouse helminth infection model 
[35]. Therapeutic biologics that target the key mediators of type 2 immune responses, IL-4 
and IL-13, are in clinical development [36]. The combined targeting of the IL-13 and IL-
33 pathways, therefore, represents a promising strategy for treating type 2 inflammation-
associated immune disorders. Taken together, these findings indicate that IL-33-mediated 
type 2 inflammation can be successfully ameliorated in animal models of allergic disorders, 
and that the utility of IL-33 blocking agents merits further investigation in clinical allergy 
studies.

Skin diseases
The overexpression of IL-33 in the epidermis leads to a spontaneous atopic dermatitis 

(AD)-like phenotype [37]. IL-33 blockade and deficiencies in IL33 or IL1RL1 have been shown 
to reduce the severity of AD in mouse models [38, 39]. Reduction of the secretion of IL-33 
is associated with attenuated disruption of epithelial tight junctions [40]. Although IL-33 is 
pathogenic in AD models, a tissue-reparative function of IL-33 was demonstrated in wound-
healing models. IL-33 treatment improves wound healing in diabetic mice by enhancing M2 
macrophage polarization [41] or the expansion of ILC2s [42].

Cardiovascular system
In the cardiovascular system, IL-33 likely functions as a cardioprotective cytokine. 

In myocardial pressure overload-induced cardiac fibrosis and hypertrophy models, 
deficiency of IL1RL1 exacerbates transaortic constriction (TAC)-induced cardiac fibrosis, 
whereas exogenous IL-33 attenuates pressure overload-induced cardiac injuries [43-45]. 
In addition, administration of IL-33 reduces the development of atherosclerosis via IL-5 
[46]. IL-33 is also protective in a mouse model of ischaemic cardiac injury by reducing cell 
death of cardiomyocytes [47, 48]. In coxsackiesvirus group B3 virus (CBV3)-induced viral 
myocarditis, the delivery of an IL-33-expressing plasmid reduces myocarditis via expansion 
of M2 macrophages [49]. IL-4 neutralization abolishes IL-33-mediated cardiac functional 
improvement in mice with myocarditis [49].

Interestingly, another study showed that IL-33 promotes eosinophilic pericarditis in 
CBV3-induced myocarditis, and that sST2 treatment improves systolic functions [50]. The 
potential use of exogenous IL-33 as a therapeutic for the treatment of cardiovascular disease 
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without triggering unwanted immune activation remains a challenging issue; it awaits 
further comprehensive pharmacological kinetic studies to define the optimal route, timing, 
and dosages in different disease models.

Kidney diseases
Several studies have revealed the pathological roles of IL-33 in renal ischaemia-

reperfusion injury (IRI) [51], cisplatin-induced acute kidney injury (AKI) [52], and ovalbumin-
induced nephrotoxicity models [53]. Intriguingly, a beneficial function of IL-33 has also 
recently been reported in a study that developed a hybrid IL-2–IL-33 fusion; researchers 
observed a protective role for the fusion protein in kidney IRI models, mediated via the 
expansion of renal ILC2s [54]. Short-term treatment with IL-33 also leads to the sustained 
expansion of renal ILC2s and protects against adriamycin-induced glomerulosclerosis [55]. 
IL-33/ST2 signalling likely functions as a double-edged sword, and participates in both 
the pathological and tissue-reparative processes in different kidney diseases, by affecting 
various cell types at different phases of disease progression [56].

Gastrointestinal diseases
The IL-33/ST2 axis is important for the maintenance of the epithelial integrity of the 

gastrointestinal tract [57]. Similar to its roles in the cardiovascular and central nervous 
system, IL-33 plays both beneficial and pathological roles in gastrointestinal diseases 
[57]. In mouse models of experimental colitis induced by dextran sulphate sodium (DSS) 
or trinitrobenzene sulfonic acid (TNBS), deficiency of the IL33 or IL1RL1 genes leads 
to amelioration of the disease, compared to its outcome in wild-type control mice, and 
treatment with an ST2 blocking antibody ameliorates experimental colitis by enhancing 
mucosal healing in mice [58]. However, other studies have shown that administration of 
recombinant IL-33 ameliorates TNBS-induced inflammatory bowel disease (IBD) in mice 
[20, 59]. Intriguingly, treatment with IL-33 at the onset of DSS-induced colitis exacerbates 
the disease severity, whereas treatment with IL-33 during the recovery phases ameliorates 
DSS-induced colitis. These findings indicate that IL-33-mediated protection may be time-
dependent and act via the regulation of Tregs during disease onset [59, 60]. Another report 
demonstrated that IL-33-mediated ILC2–amphiregulin–EGFR signalling protects against 
DSS-induced intestinal inflammation [61]. The balance between IL-33-mediated tissue 
inflammation and repair must be further addressed in these models to evaluate the potential 
therapeutic applications of IL-33.

Central nervous system
In the setting of experimental ischaemic stroke, exogenous IL-33 is protective; it reduces 

brain inflammation and the development of lesions [62-64]. In spinal cord injury models, IL-
33 mediates neuronal protection via type 2 immune responses [65, 66]. Although IL-33 is 
likely to be neuroprotective in stroke and spinal cord injury models, the development of an 
effective strategy for the delivery of recombinant protein to the injured brain tissue remains 
a challenging issue that awaits further study.

In a mouse model of Alzheimer’s disease, the administration of IL-33 ameliorates 
disease progression and prevents cognitive decline [66]. Conversely, IL-33 mediates 
pathogenic eosinophilic responses in Angiostrongylus cantonensis infection-induced 
meningitis, and antibodies against ST2 or IL-33 blockade reduce disease severity [66-68]. In 
the model of experimental autoimmune encephalomyelitis (EAE), IL-33 blockade mediates 
both pathogenic and protective roles [69-71]. Collectively, the data indicate that IL-33 
likely mediates neuroprotective functions in various brain injury models. However, IL-33-
sensitized type 2 inflammation may be pathogenic in the context of infection or autoimmune 
disorders [72].
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Conclusion

IL-33 exhibits diverse immune regulatory functions during the various phases of 
different diseases. IL-33 likely functions as a disease sensitizer and plays pathological roles 
in inflamed tissues in allergic disorders that involve hyperreactive immune responses. 
In contrast, IL-33 also mediates tissue-protective functions during the recovery phase 
following tissue injury, which involves activation of tissue-reparative M2 macrophages [41], 
ILC2s [42], and Tregs [73]. Therefore, determining how to fine-tune and appropriate time to 
manipulate IL-33/ST2 signalling is crucial for treating inflammatory diseases characterized 
by immune imbalance.

Given their central roles in the regulation of immune responses, cytokines are appealing 
targets for therapeutic intervention. IL-33/ST2 signalling has diverse cellular targets and 
functions. Neither the pathological functions nor the physiological functions of this cytokine 
in human diseases are fully understood, and await additional exploration. Pinpointing the 
specific roles of IL-33 in genetically modified mice will allow us to better understand its 
roles in the pathogenesis of inflammatory diseases. A better understanding of the molecular 
mechanism by which IL-33/ST2 signalling is involved in pathological immune disorders will 
facilitate the development of novel therapeutic strategies that target IL-33 and ST2 signalling. 
Monoclonal antibodies against IL-33 or ST2 are under development by pharmaceutical 
companies and in phase I–II clinical trials for the treatment of allergic diseases. The 
combination of IL-33 blockade with other therapeutics could be an option for the efficacious 
treatment of inflammatory diseases. However, the key to best therapy is to determine the 
various components of combination. It is currently too early to answer this question because 
the scientific evidence is insufficient. Further studies comparing the efficacies of different 
therapeutic combinations will help answer these questions.
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