5,243 research outputs found
A search for passive protoplanetary disks in the Taurus-Auriga star-forming region
We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in
Taurus. Our goal was to monitor objects that possess a disk but have a weak
Halpha line, a common accretion tracer for young stars, to determine whether
they host a passive circumstellar disk. We used medium-resolution optical
spectroscopy to assess the objects' accretion status and to measure the Halpha
line. We found no convincing example of passive disks; only transition disk and
debris disk systems in our sample are non-accreting. Among accretors, we find
no example of flickering accretion, leading to an upper limit of 2.2% on the
duty cycle of accretion gaps assuming that all accreting TTS experience such
events. Combining literature results with our observations, we find that the
reliability of traditional Halpha-based criteria to test for accretion is high
but imperfect, particularly for low-mass TTS. We find a significant correlation
between stellar mass and the full width at 10 per cent of the peak (W10%) of
the Halpha line that does not seem to be related to variations in free-fall
velocity. Finally, our data reveal a positive correlation between the Halpha
equivalent width and its W10%, indicative of a systematic modulation in the
line profile whereby the high-velocity wings of the line are proportionally
more enhanced than its core when the line luminosity increases. We argue that
this supports the hypothesis that the mass accretion rate on the central star
is correlated with the Halpha W10% through a common physical mechanism.Comment: accepted for publication in MNRAS; 26 pages, 9 figures, 3 table
Spatiotemporal expression of regulatory kinases directs the transition from mitosis to cellular morphogenesis in Drosophila
Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases
Consistency between ARPES and STM measurements on SmB
Strongly correlated topological surface states are promising platforms for
next-generation quantum applications, but they remain elusive in real
materials. The correlated Kondo insulator SmB is one of the most promising
candidates, with theoretically predicted heavy Dirac surface states supported
by transport and scanning tunneling microscopy (STM) experiments. However, a
puzzling discrepancy appears between STM and angle-resolved photoemission
(ARPES) experiments on SmB. Although ARPES detects spin-textured surface
states, their velocity is an order of magnitude higher than expected, while the
Dirac point -- the hallmark of any topological system -- can only be inferred
deep within the bulk valence band. A significant challenge is that SmB
lacks a natural cleavage plane, resulting in ordered surface domains limited to
10s of nanometers. Here we use STM to show that surface band bending can shift
energy features by 10s of meV between domains. Starting from our STM spectra,
we simulate the full spectral function as an average over multiple domains with
different surface potentials. Our simulation shows excellent agreement with
ARPES data, and thus resolves the apparent discrepancy between large-area
measurements that average over multiple band-shifted domains and
atomically-resolved measurements within a single domain
Enhancing arsenic mitigation in Bangladesh: Findings from institutional, psychological, and technical investigations
As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change. The principal drawbacks of deep tubewells are that installation costs are too high for most families to own private wells, and that for various socio-cultural-religious reasons, people are not willing to walk long distances to access communal tubewells. In addition, water sector planners have reservations about greater exploitation of the deep aquifer, out of concern for current or future geogenic contamination. Groundwater models and field studies have shown that in the great majority of the affected areas, the risk of arsenic contamination of deep groundwater is small; salinity, iron, and manganese are more likely to pose problems. These constituents can in some cases be avoided by exploiting an intermediate depth aquifer of good chemical quality, which is hydraulically and geochemically separate from the arsenic-contaminated shallow aquifer. Deep tubewells represent a technically sound option throughout much of the arsenic-affected regions, and future mitigation programs should build on and accelerate construction of deep tubewells. Utilization of deep tubewells, however, could be improved by increasing the tubewell density (which requires stronger financial support) to reduce travel times, by considering water quality in a holistic way, and by accompanying tubewell installation with motivational interventions based on psychological factors. By combining findings from technical and social sciences, the efficiency and success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced
Recommended from our members
Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection.
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1
Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments
Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient over-enrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15 N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen / 80% helium). Nitrification and denitrification rates were more than ten-fold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.
Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments: NO 3 - reduction in salt marsh sediments (PDF Download Available). Available from: https://www.researchgate.net/publication/305480944_Long-term_fertilization_alters_the_relative_importance_of_nitrate_reduction_pathways_in_salt_marsh_sediments_NO_3_-_reduction_in_salt_marsh_sediments [accessed Jun 6, 2017]
- …