476 research outputs found

    Genome-wide association studies in kidney transplantation: Advantages and constraints

    Get PDF
    Since the discovery of the human leukocyte antigen (HLA) system, the role of HLA molecules in the field of transplantation has been appreciated: better matching leads to better graft function. Since then, the association of other genetic polymorphisms with clinical outcome has been investigated in many studies. Genome-wide association studies (GWAS) represent a powerful tool to identify causal genetic variants, by simultaneously analyzing millions of single nucleotide polymorphisms scattered across the genome. GWAS in transplantation may indeed be useful to reveal novel markers that may potentially be involved in the mechanism of allograft rejection and graft failure. However, the relevance of GWAS for risk stratification or donor selection for an individual patient is limited as is already reflected by the fact that many parameters, significant in one study,  cannot be confirmed in another one.   Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    Hot air drying characteristics and nutrients of apricot armeniaca vulgaris lam pretreated with Radio Frequency(RF)

    Full text link
    [EN] Apricot pretreated with RF and then dried with convective hot air at 65℃, 3.0m/s in this research. RF pretreatment time of 20, 30, 40 and 50min were chosen. Results showed that, there is only falling rate period during apricot hot air drying, and the drying rate of apricot is improved significantly; Herdenson and Pabis model is suitable for apricot hot air drying; retentions of flavonoids, polyphenols and Vc in dried apricot were higher than those of fresh apricot; when RF treating time was chosen 30mins, nutrients retentions of Vc, flavonoid and polyphenols were 0.9543mg/100g, 5.4089mg/100g and 7.3382mg/100g, separately.The work was financially supported by the Fundamental Research Funds for the Central Universities of China (NO. GK201503072 and GK201601007).Peng, M.; Liu, J.; Lei, Y.; Yang, X.; Wu, Z.; Huang, X. (2018). Hot air drying characteristics and nutrients of apricot armeniaca vulgaris lam pretreated with Radio Frequency(RF). En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1583-1590. https://doi.org/10.4995/IDS2018.2018.7524OCS1583159

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure

    Spreading Dynamics of Polymer Nanodroplets

    Full text link
    The spreading of polymer droplets is studied using molecular dynamics simulations. To study the dynamics of both the precursor foot and the bulk droplet, large drops of ~200,000 monomers are simulated using a bead-spring model for polymers of chain length 10, 20, and 40 monomers per chain. We compare spreading on flat and atomistic surfaces, chain length effects, and different applications of the Langevin and dissipative particle dynamics thermostats. We find diffusive behavior for the precursor foot and good agreement with the molecular kinetic model of droplet spreading using both flat and atomistic surfaces. Despite the large system size and long simulation time relative to previous simulations, we find no evidence of hydrodynamic behavior in the spreading droplet.Comment: Physical Review E 11 pages 10 figure

    Interface ferromagnetism and orbital reconstruction in BiFeO3- La0.7Sr0.3MnO3 heterostructures

    Get PDF
    We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L2,3-edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related with an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at oxygen K-edge.Comment: 17 pages, 4 figures, PRL in pres

    Extremal Bundles on Calabi-Yau Threefolds

    Get PDF
    We study constructions of stable holomorphic vector bundles on Calabi–Yau threefolds, especially those with exact anomaly cancellation which we call extremal. By going through the known databases we find that such examples are rare in general and can be ruled out for the spectral cover construction for all elliptic threefolds. We then introduce a general Hartshorne–Serre construction and use it to find extremal bundles of general ranks and study their stability, as well as computing their Chern numbers. Based on both existing and our new constructions, we revisit the DRY conjecture for the existence of stable sheaves on Calabi–threefolds, and provide theoretical and numerical evidence for its correctness. Our construction can be easily generalized to bundles with no extremal conditions imposed

    Concerning Order and Disorder in the Ensemble of Cu-O Chain Fragments in Oxygen Deficient Planes of Y-Ba-Cu-O

    Full text link
    In connection with numerous X-ray and neutron investigations of some high temperature superconductors (YBa2_2Cu3_3O6+x_{6+x} and related compounds) a non-trivial part of the structure factor, coming from partly disordered Cu-O-\dots-O-Cu chain fragments, situated within basal planes, CuOx_x, can be a subject of theoretical interest. Closely connected to such a diffusive part of the structure factor are the correlation lengths, which are also available in neutron and X-ray diffraction studies and depend on a degree of oxygen disorder in a basal plane. The quantitative measure of such a disorder can be associated with temperature of a sample anneal, TqT_q, at which oxygen in a basal plane remains frozen-in high temperature equilibrium after a fast quench of a sample to room or lower temperature. The structure factor evolution with xx is vizualized in figures after the numerical calculations. The theoretical approach employed in the paper has been developed for the orthorhombic state of YBCO.Comment: Revtex, 27 pages, 14 PostScript figures upon request, ITP/GU/94/0

    FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells

    Get PDF
    Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes

    Electronic structure in underdoped cuprates due to the emergence of a pseudogap

    Full text link
    The phenomenological Green's function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, xx, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains 1+x1+x hole states) to the Luttinger pocket (which contains xx hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.Comment: 11 pages, 9 figure

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic
    corecore