14,072 research outputs found

    A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy

    Get PDF
    A set of unified constitutive equations is presented that predict the asymmetric tension and compression creep behaviour and recently observed double primary creep of pre-stretched/naturally aged aluminium-cooper-lithium alloy AA2050-T34. The evolution of the primary micro- and macro-variables related to the precipitation hardening and creep deformation of the alloy during creep age forming (CAF) are analysed and modelled. Equations for the yield strength evolution of the alloy, including an initial reversion and subsequent strengthening, are proposed based on a theory of concurrent dissolution, re-nucleation and growth of precipitates during artificial ageing. We present new observations of so-called double primary creep during the CAF process. This phenomenon is then predicted by introducing effects of interacting microstructures, including evolving precipitates, diffusing solutes and dislocations, into the sinh-law creep model. In addition, concepts of threshold creep stress σth and a microstructure-dependant creep variable H, which behave differently under different external stress directions, are proposed and incorporated into the creep model. This enables prediction of the asymmetric tension and compression creep-ageing behaviour of the alloy. Quantitative transmission electron microscopy (TEM) and related small-angle X-ray scattering (SAXS) analysis have been carried out for selected creep-aged samples to assist the development and calibration of the constitutive model. A good agreement has been achieved between the experimental results and the model. The model has the potential to be applied to creep age forming of other heat-treatable aluminium alloys

    Controversial Product Advertising in China: Perceptions of Three Generational Cohorts

    Full text link
    China is a country that has undergone a wide range of significant changes over the last 30 years, economically, politically, and socially. Major events not only have an important effect on the developmental history of a country such as China, but also create a new generational cohort, which can adopt different views and attitudes than those characterizing previous generations. This study analyses the results of a survey of three different generational groups in China, focusing on their attitudes towards the promotion of controversial products and advertising execution techniques. Research results show significant differences between the younger and older generations, especially in regard to gender-related products and certain advertising execution techniques

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    An Efficient Representation of Euclidean Gravity I

    Full text link
    We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.Comment: 31 pages, 1 figur

    Random-key cuckoo search for the travelling salesman problem

    Get PDF
    Combinatorial optimization problems are typically NP-hard, and thus very challenging to solve. In this paper, we present the random key cuckoo search (RKCS) algorithm for solving the famous Travelling Salesman Problem (TSP). We used a simplified random-key encoding scheme to pass from a continuous space (real numbers) to a combinatorial space. We also consider the displacement of a solution in both spaces using L\'evy flights. The performance of the proposed RKCS is tested against a set of benchmarks of symmetric TSP from the well-known TSPLIB library. The results of the tests show that RKCS is superior to some other metaheuristic algorithms

    Effects of principal stress rotation on the wave–seabed interactions

    Get PDF
    This paper simulates the wave–seabed interactions considering the principal stress rotation (PSR) by using the finite element method. The soil model is developed within the framework of kinematic hardening and the bounding surface concept, and it can properly consider the impact of PSR by treating the PSR generating stress rate independently. The simulation results are compared with centrifuge test results. The comparison indicates that the simulation with the soil model considering the PSR can better reproduce the test results on the development of pore water pressure and liquefaction than the soil model without considering the PSR. It indicates that it is important to consider the PSR impact in simulation of wave–seabed soil interactions

    On a fabric evolution law incorporating the effects of b-value

    Get PDF
    In this paper, the effects of the intermediate stress ratio, i.e., b-value (b = (σ₂ − σ₃)/(σ₁ − σ₃)), on the contact normal-based fabric evolution of granular material, are incorporated into an extant hybrid fabric evolution law. The new evolution law is validated by Discrete Element Method (DEM) simulation results under monotonic shearing with different b-values. Predictions of the proposed generalized fabric evolution law agree well with the DEM simulation results. This evolution law can be widely used for constitutive modelling of granular materials, considering the effects of b-value in a general geomechanical three-dimensional stress space
    corecore