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ABSTRACT 22 

In this paper, the effects of the intermediate stress ratio, i.e., b-value (b=(ı2-ı3)/ (ı1-ı3)), on 23 

the contact normal-based fabric evolution of granular material, are incorporated into an extant 24 

hybrid fabric evolution law. The new evolution law is validated by Discrete Element Method 25 

(DEM) simulation results under monotonic shearing with different b-values. Predictions of the 26 

proposed generalized fabric evolution law agree well with the DEM simulation results. This 27 

evolution law can be widely used for constitutive modelling of granular materials, considering 28 

the effects of b-value in a general geomechanical three-dimensional stress space. 29 

Keywords: Fabric evolution; Evolution law; Effects of b-value; DEM 30 
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1 Introduction 31 

Most field problems in geotechnical engineering, e.g., earthquake, traffic loading, and river 32 

embankments, involve a general loading condition (ı1≥ı2≥ı3), where soils are subject to 33 

complicated loading paths, together with changes in the magnitudes of the three principal 34 

stresses (i.e., ı1, ı2 and ı3) and rotations of their directions. Real soils, especially sands, are 35 

loading path dependent. This means that their behaviours are affected by the magnitudes of the 36 

three principal stresses and their directions; hence, it is significant to take all the three principal 37 

stresses into consideration in geotechnical engineering design and construction. 38 

One interesting aspect of soil response is the sensitivity of the mechanical soil behaviour to the 39 

intermediate stress ratio, i.e., b-value. The b-value is introduced as a non-dimensional 40 

parameter b=(ı2-ı3)/ (ı1-ı3), where ı1 and ı3 are the major and minor principal stresses, 41 

respectively. The b-value is widely used to describe the effects of intermediate principal stress 42 

(ı2), which was first proposed by Habib [1], who performed a series of torsional triaxial tests 43 

to investigate the strength characteristics of clays and sands. Bishop [2] determined that the 44 

influence of intermediate principal stress ı2 on soil response can be more readily appreciated 45 

in terms of b-value rather than ı2 itself. In the early 1960s, a number of researchers focused on 46 

the study of the effects of the b-value on the soil behaviours, e.g., Bjerrum and Kummeneje [3] 47 

and Cornforth [4]. A review of the above work was made by Oda et al [5], who compared 48 

triaxial and plane-strain test results and noted that (1) the friction angle in plane strain testing 49 

(b=0.2၉0.3) is up to 10% ၉ 20% larger than that in triaxial compression testing (b=1.0) for 50 

dense sand tested under a low confining pressure and (2) the strain to failure is smaller in plane 51 

strain testing (b=0.2၉0.3) than that in triaxial compression testing (b=1.0) for sands of similar 52 

densities. It is obvious, from their observations, that the b-value demonstrates significant 53 
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effects on soil strength and stress-strain behaviours. Similar findings in the experiments were 54 

proposed by using various advanced testing apparatuses, e.g., triaxial testing [6-8] and Hollow 55 

cylinder testing [9-12].  Recently, DEM simulations have been used to perform cubic triaxial 56 

testing (e.g., [13, 14]) and Hollow cylinder testing (e.g., [15, 16]) and demonstrated good 57 

consistency with experimental behaviours. These findings in both the laboratory and DEM 58 

simulations confirmed and enhanced the conclusions that b-value has significant effects on the 59 

deformation and strength behaviour of granular materials, e.g., sands.  60 

From micromechanical analysis [17, 18], the effects of b-value on strength are strongly linked 61 

to the distribution of the contact normal, hence to the fabric tensor based on the contact normal 62 

[19, 20]. For example, the stress-force-fabric relationship suggests that the peak stress ratio is 63 

dependent on the contact normal distribution anisotropy [21, 22]. Evidence from DEM 64 

simulations has directly demonstrated that peak fabric anisotropy [13, 23] and critical fabric 65 

anisotropy [24] are not circular in the deviatoric plane for different b-values. These effects are 66 

also confirmed by the DEM simulations carried out by Li et al [15].  67 

Several formulations have been proposed to characterize the effects of b-value on the peak and 68 

residual strengths of both the initial isotropic and anisotropic granular materials [25-29]. These 69 

formulations for constitutive modelling are developed phenomenologically. Indeed, 70 

phenomenological models have shown their abilities to capture the macro effects of b-value, 71 

the evolution of the internal structure however is ignored in phenomenological models. In 72 

addition, those models introduced too many parameters without physical meanings and are 73 

difficult for calibration. On the other hand, an increasing interest in microscopic modelling and 74 

multi-scale approaches is rising, e.g., fabric-based constitutive modelling. Fabric evolution law, 75 

accounting for the microscopic information, is the essential element to develop fabric-based 76 

constitutive models for anisotropic behaviours of granular materials. To develop constitutive 77 

models considering the effects of b-value as well as anisotropy, the effects of b-value on the 78 
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fabric evolution law should be considered. Since the sensitivity of the b-value on the 79 

mechanical response of the granular materials has been widely identified, many researcher (e.g., 80 

[30, 31]) have tried to incorporate this feature into their three dimensional constitute models. 81 

However, the effects of the b-value on the fabric evolution, e.g. the critical stress ratio and the 82 

critical fabric anisotropy (as evident above), has not been displayed yet. 83 

In this paper, we generalize a hybrid fabric evolution law, which is calibrated with results of 84 

fabric evolution statistically obtained from the micro-scale geometrical quantities, to 85 

incorporate the effects of b-value on the evolution of fabric. To achieve this, we incorporate 86 

the effects of b-value into the proposed hybrid evolution law by assuming that ܥଵ and ܥி are 87 

dependent on the b-value in terms of the Lode angle ߠ௟. The modified evolution law considers 88 

both the effects of anisotropy and b-value on the fabric evolution. It can be widely used for 89 

fabric-based constitutive modelling of granular materials responding to general stress paths, 90 

together with simple isotropic constitutive models, such as the Cam clay Model, Modified Cam 91 

clay Model, or the Clay and Sand Model (CASM) proposed by Yu [32, 33]. However, this 92 

work is beyond the scope of this paper and will be presented in a future paper. 93 

2 Generalization of the fabric evolution law 94 

2.1 Definitions of fabric tensor 95 

As shown in Fig. 1, for each contact point, there are two types of unit contact normal, ࢔ and 96 െ97 .࢔ 
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 98 

Fig.1 Definition of the contact normal 99 

The relative frequency distribution of the contact normal may be described by a probability 100 

density function ࡱሺ࢔ሻ.The density function is defined so that it satisfies the following equation: 101 ׬ ఆߗሻ݀࢔ሺܧ ൌ ͳ                                      (1.1) 102 

where ߗ ൌ ஺௥మ is a solid angle for the three dimensional space; A denotes the spherical surface 103 

area and r denotes the radius of the considered sphere. Given that each point has two types of 104 

contact normal opposite to each other, we must have: 105 ܧሺ࢔ሻ ൌ  ሻ                                      (1.2) 106࢔ሺെܧ

In most cases in three dimensional materials (e.g., [21-22, 35-36]), it can be truncated by 107 

spherical harmonic series in second-order as  108 

ሻ࢔ሺܧ ൌ ଵସగ ሺͳ ൅ ǣࡲ  ሻ                          (1.3) 109࢔۪࢔

The tensor ࡲ in equation (1.3) is known as the second-order fabric tensor of the third kind in 110 

terms of unit contact normal. Fabric tensor ࡲ is traceless, and can be used to describe the fabric 111 

anisotropy in the assembly. 112 

Practically, the tensor ࡲ can be estimated from the second-order fabric tensor ࡺ as follows (e.g, 113 

[21, 34, 36-37]): 114 

ࡲ ൌ ଵହଶ ቀࡺ െ ଵଷ  ቁ                                  (1.4) 115ࡵ

where ࡺ  can be determined from the discrete directional contact normal ࢔  of a granular 116 

assembly by 117 
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ࡺ ൌ ଵே೎ σ ே೎א௖௖࢔௖۪࢔                                (1.5) 118 

2.2 Fabric tensor at a critical state 119 

Granular materials under monotonic shearing will achieve a critical state characterised by 120 

stationary values of stress, void ratio with the unlimited development of shear strain [38-41]. 121 

We redefine the anisotropic fabric state by adding one more equation which enables a 122 

requirement on fabric tensor at the critical state (critical fabric tensor) into the conventional 123 

definition of the critical state. The critical fabric tensor ࡲ௖ is assumed to be proportional with 124 

the deviatoric stress ratio tensor ࣁ at the critical state, i.e. 125 

௖ࡲ  ൌ ௖ࣁிሺܾሻܥ ൌ ிሺܾሻܥ ቀࡿ௣ቁ௖                        (1.6) 126 

where ܥி is a proportional coefficient generally dependent on the ܾ-value, ߟ௖ ൌ ඥ͵ ʹΤ ԡࣁԡ, s 127 

is the stress deviator and p is the mean effective stress. 128 

The spatial distribution of contact normal keeps evolving to support the mobilised strength. 129 

The rate of the fabric, i.e., ࡲሶ , is characterized by the fabric evolution law; hence the physical 130 

description of the rate of the fabric is defined as the changing of the spatial distribution of 131 

contact normal. In this paper, a hybrid fabric evolution law has been proposed based on the 132 

principle of material frame indifference, with the assumption of rate-independency and unique 133 

critical fabric state, i.e., 134 

ሶࡲ ൌ ଵሺͳܥ ൅ ሶࣁԡሻࣁଶԡܥ ൅ ࣁிܥሶሺ߉ଷܥ െ ிܥ ሻ                               (2.1) 135ࡲ ൌ ቀி೜ఎ ቁ௖ ǡ ௤ܨ ൌ ඥ͵ ʹΤ ԡࡲԡǡ ߟ ൌ ඥ͵ ʹΤ ԡࣁԡ                           (2.2) 136 

where ܥଵǡ ଶǡܥ ଷܥ  are material constants controlling the rate of fabric tensor, hence the 137 

microscopic mechanisms of the fabric evolution; ࣁ ൌ  is a stress ratio tensor representing 138 ݌Ȁࡿ

the deviatoric stress tensor ࡿ normalized by the mean stress ߉ ;݌ሶ  is a norm of rate of the 139 

deviatoric plastic strain, i.e., ߉ሶ ൌ ฮ݁௣ሶ ฮ; Fq determines the fabric deviator. 140 
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It is postulated in the evolution law that the rate of the fabric tensor, which is defined on the 141 

contact normal, is related to both the rate of the stress ratio tensor and the plastic strain rate 142 

tensor, respectively reflect two different microscopic mechanisms of the fabric evolution. At 143 

the initial stage of shearing, as the rapid increase of the stress ratio, contacts are forced to 144 

reorganize to support the applied stress. The change of distribution of contact normal, hence 145 

the evolution of fabric tensor, is mainly due to the net creation of the contacts, and thus is 146 

dominated by the stress ratio rate. This is characterized as the first microscopic mechanisms of 147 

the fabric evolution, which is controlled by C1 and C2. At a large shear strain, the net rate of 148 

contact creation decreases considerably, and the change of contact normal distribution is 149 

controlled by the migration of contact point through sliding and rolling of particles across each 150 

other, which can be assumed to be related to the plastic strain rate. This is characterized as the 151 

second microscopic mechanisms of the fabric evolution, which is controlled by C3. 152 

This evolution law captures the fabric evolution law in the entire stress ratio range and all 153 

loading directions under a monotonic loading. These findings have been validated with a 154 

satisfactory agreement by monotonic DEM simulations. Details of the validation can be found 155 

in Hu [42]. However, the effects of b-value have not been fully considered in this evolution 156 

law, which will be shown as follows. 157 

2.1 Influence of b-value on the critical stress ratio  158 

From equation (2.2), we see that ܥி is dependent on the critical stress ratio and the critical 159 

fabric anisotropy. It is well known that the critical stress ratio ܯ ൌ  ௖ is dependent on b-value 160ߟ

or Lode angle ߠ௟ . The following equation [28, 33] is used to characterize the relationship 161 

between ܯ and Lode angle ߠ௟: 162 

ሻߠሺܯ ൌ ሻǡߠ௖௖݄ଵሺܯ ݄ଵሺߠሻ ൌ ൬ ଶ௟భరଵା௟భరା൫ଵି௟భర൯௦௜௡ሺଷఏ೗ሻ൰ଵ ସΤ ǡ ݈ଵ ൌ ெ೎೟ெ೎೎            (3.1) 163 
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where ܯ௖௧ and ܯ௖௖ are the critical stress ratios for triaxial compression and extension. If we 164 

assume that the frictional angles on the shear plane for both extension and compression are the 165 

same, it can be estimated that    166 

௖௖ܯ ൌ ଺ୱ୧୬ ሺథ೎ೡሻଷିୱ୧୬ ሺథ೎ೡሻ ǡ ௖௧ܯ ൌ ଺ୱ୧୬ ሺథ೎ೡሻଷାୱ୧୬ ሺథ೎ೡሻ ǡ sinሺ߶௖௩ሻ ൌ ቀఙభିఙయఙభାఙయቁ௖              (3.2) 167 

where ߶௖௩ is the critical frictional angle. According to relationships in equation (3.2), ݈ଵ can 168 

be expressed in terms of ܯ௖௖ as 169 

݈ଵ ൌ ଷଷାெ೎೎                                                    (3.3) 170 

In equation (3.1), function ݄ଵሺߠ௟ሻ determines the shape of ܯ in the ߨ plane (see Fig. 2). For 171 

triaxial compression loading paths, ߠ௟ ൌ െ ߨ ͸Τ ǡ ݄ଵሺߠ௟ሻ ൌ ͳǡ ܯ ൌ  ௖௖Ǣ for triaxial extension 172ܯ

loading paths, ߠ௟ ൌ ߨ ͸Τ ǡ ݄ଵሺߠሻ ൌ ݈ଵǡ ܯ ൌ  ௖௧. This relationship was proven to be realistic 173ܯ

when compared with experimental data. One merit of this shape function is that it is convex 174 

for a larger range of choices of ݈ଵ [43]. We also use equation (3) to predict the critical stress 175 

ratios for various lode angles from the DEM triaxial compression results obtained by Zhao and 176 

Guo [24].The comparison between predictions obtained by the relationship in equation (3) with 177 

the DEM simulation results is shown in Fig. 2. Note that the results have been normalized by 178 ܯ௖௖ ൌ ͲǤ͸ඥ͵ ʹΤ , and that ݈ଵ is obtained by equation (3.3). It can be seen in Fig. 2 that equation 179 

(3) with ݈ ଵ estimated by equation (3.3) can capture the critical stress ratio for different b-values 180 

well.  181 
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 182 

Fig. 2 Theoretical predictions and DEM results of critical stress ratios in the ߨ plane 183 

2.2 Influence of b-value on the critical fabric anisotropy  184 

From the DEM tests results [24] in Fig. 3, it can be seen that the shape function for the critical 185 

fabric ratio ܯி ൌ  ி is also dependent on 186ܯ plane, which means that ߨ ௤௖  is not a circle in theܨ

the Lode angle. A similar shape function to equation (3.1) is observed. However, ܯி under 187 

triaxial extension is greater than that under triaxial compression, which is different from the 188 

case for a critical stress ratio. The differences imply that the shape parameter ݈ଶ for critical 189 

fabric anisotropy should be different from the shape parameter ݈ଵ for the critical stress ratio. 190 

The critical fabric ratio ܯி is assumed to be a function of Lode angle as    191 

௟ሻߠிሺܯ ൌ ௟ሻǡߠி௖݄ଶሺܯ ݄ଶሺߠ௟ሻ ൌ ൬ ଶ௟మరଵା௟మరା൫ଵି௟మర൯௦௜௡ሺଷఏ೗ሻ൰ଵ ସΤ ǡ ݈ଶ ൌ ெಷ೟ெಷ೎               (4) 192 

where ܯி௧ and ܯி௖ are the critical fabric ratios for triaxial compression and extension shearing, 193 

respectively. In equation (4), ݄ଶሺെ ߨ ͸Τ ሻ ൌ ͳǡ ிܯ ൌ ி௖Ǣܯ ݄ଶሺߨ ͸Τ ሻ ൌ ͳǡ ிܯ ൌ ி௧Ǥܯ  An 194 

empirical equation based on the DEM test results carried out by Zhao and Guo [24] suggests 195 

that   196 
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݈ଶ ൌ ͳ ݈ଵΤ                                                          (5) 197 

 198 

Fig. 3 Theoretical predictions and DEM results of critical fabric ratios in the deviatoric plane 199 

In general, we can choose ݈ଵ and ݈ଶ independently. If ܯி௧ ி௖Τܯ  is not available, then we can 200 

use equation (5) to estimate ݈ଶ instead. Fig. 3 presents the comparison between the predictions 201 

from the relationship in equation (4) with different choices of shape parameter ݈ଶ and the DEM 202 

results by Zhao and Guo [24], in which the fabric deviator ܯிሺߠ௟ሻ has been normalized by ܯி௖. 203 

It can be seen that the prediction of equation (4) perfectly agrees with the DEM results. The 204 

estimation of ݈ଶ by equation (5) leads to an acceptable gap between the DEM results and the 205 

theoretical prediction.  206 

2.3 The generalized fabric evolution law 207 

The dependency of ܯிሺߠ௟ሻ and ܯሺߠ௟ሻ on different shape parameters makes ܥி dependent on 208 

the Lode angle. The second term on the right side of the evolution law in equation (2.1) 209 

represents the second evolution mechanism related to the plastic strain rate. The dependency 210 

of ܥி  on the Lode angle introduces the effect of b-value on the second evolution law 211 
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mechanism. The first term on the right side of the evolution law in equation (2.1) represents 212 

the first fabric evolution mechanism related to the rate of stress ratio increment and dominates 213 

before reaching the peak stress ratio. To consider the effects of b-value on the first fabric 214 

evolution mechanism, ܥଵ is assumed to be dependent on the Lode angle and is replaced by 215 ܥଵ݄ଷሺߠ௟ሻ with a new shape parameter ݈ଷ. The shape function ݄ଷሺߠ௟ሻ is written as 216 

 ݄ଷሺߠሻ ൌ ൬ ଶ௟యరଵା௟యరା൫ଵି௟యర൯௦௜௡ሺଷఏ೗ሻ൰ଵ ସΤ ǡ   ݈ଷ ൌ ͳ ݈ଵΤ                     (6) 217 

This estimation is proposed based on the observation from the DEM results from Thornton [13, 218 

23]. Thornton presents the response of fabric anisotropy in the ߨ plane for different b-values at 219 

different shearing strain before softening. Compared with the critical fabric anisotropy in Fig. 220 

4, the shape function of the fabric response in the ߨ plane is quite similar at different levels of 221 

the shear strain. The estimation of ݈ଷ ൌ ͳ ݈ଵΤ  is assumed with the consideration of avoiding too 222 

many material parameters. The consequence of this estimation will be illustrated in details in 223 

section 3.2.  224 

A new evolution law considering the effect of b-value is generalized from the hybrid evolution 225 

law in equation (2) as:  226 

ሶࡲ ൌ ௟ሻሺͳߠଵ݄ଷሺܥ ൅ ሶࣁԡሻࣁଶԡܥ ൅ ࣁ௟ሻߠிሺܥሶሺ߉ଷܥ െ ௟ሻߠிሺܥ ሻǡࡲ ൌ ெಷሺఏ೗ሻெሺఏ೗ሻ             (7) 227 

In this evolution law, the function ܥிሺߠ௟ሻ  considers the effects of b-value on the second 228 

evolution mechanism, while the function ݄ଷሺߠ௟ሻ considers the effects of b-value on the first 229 

evolution mechanism. As both function ܥிሺߠ௟ሻ and ݄ ଷሺߠ௟ሻ are functions of stress invariants of 230 

the stress tensor, the evolution law satisfies the requirement of the principle of material-frame 231 

indifference. The attractor ‘ܥிሺߠ௟ሻࣁ െ  ensures that the new evolution law reaches a unique 232 ’ࡲ

critical fabric, which is proportional to the stress ratio tensor ࢉࣁ, under monotonic shearing. 233 
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When we choose the shape parameters as ݈ଶ ൌ ݈ଵǡ ݈ଷ ൌ ͳ, the evolution law in equation (7) 234 

reduces to the evolution law in equation (2). 235 

3 Validation of the generalised evolution law 236 

A series of DEM simulations, by using the PFC3D software ([44]), are performed to validate 237 

the generalised evolution law. The behaviour at contacts is modelled by a soft-contact approach, 238 

which allows vanishing small overlapping between rigid particles. The linear contact model, 239 

i.e., the Hookean model is used to describe the local contact behaviour. The ratio between the 240 

tangential and normal stiffness can provide the Poisson’s ratio. In order to minimize possible 241 

boundary arching effects, a convex polyhedral (polygonal) shape of the specimen is used, and 242 

a set of massless infinite rigid walls are specified to form a polyhedral-shaped boundary (e.g., 243 

Fig.4). The specimen size is chosen to be relatively larger compared with the particle size to 244 

accommodate around 11090 and 10151 particles for dense and loose specimens, respectively.  245 

 246 

Fig.4 Example of polyhedron, n=8  247 

The main mechanical behaviour of granular materials that we are interested in, e.g., the stress-248 

strain relationship, volumetric strain, shear strain and soil anisotropy, can be reproduced 249 

satisfactorily by using spherical particles. The anisotropic packing structure of granular 250 
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assembly with spherical particles is confirmed by experimental isotropic compression tests 251 

(e.g., [45-46]). Hence, the spherical particles are used in this study for the sake of simplicity.  252 

A series of parametric studies have been done to determine a proper grain radius range, which 253 

can balance the number of particles and the computational efficiency. In addition, a larger range 254 

of grain radius may result in the fact that small particles enter into the voids between the larger 255 

particles. Hence in this study, the radius of spherical particles consisting of numerical sample 256 

is randomly distributed between the range of 0.3mm and 0.5mm.   257 

 258 
Fig. 5 Isotropic sample preparation by the radius expansion method 259 

The sample of spherical particles is prepared by using the radius expansion method to generate 260 

initial isotropic sample with varying initial void ratios (Fig.5). The dense and loose samples 261 

with spherical particles are generated by specifying the frictional coefficients ug=0.5 and ug=0.1, 262 

respectively. Then the samples are isotropically consolidated to the confining pressure of 263 

p=500kPa. At this stage, the initial void ratios are 0.64 and 0.79, corresponding to dense and 264 

loose samples. Then the friction coefficient u is restored to the representative value u=0.5 and 265 

the samples are ready for simulations. The drained true triaxial loading path is applied, and the 266 

principal direction nı is unchanged while the deviatoric strain ѓq continuously increases. A 267 

mixed controlled boundary is employed with partially stress-controlled and partially strain-268 

controlled, details can be referred to Li et al [15, 47]. During monotonic shearing for all tests, 269 

the mean pressure remains at 500 kPa with various b-values. The b-value ranges from 0 to 1 at 270 
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an interval of 0.2. Since simulations of quasi-static granular material behaviour are focused, 271 

the mechanical damping is introduced to dissipate energy by damping particle motions. The 272 

local damping is employed. In the virtual experiments to be presented, the Cauchy stress and 273 

Biot strain definitions are followed [48]. The input parameters for the DEM simulation are 274 

listed in Table 1. 275 

Table 1 DEM simulation properties 276 

Number of particles Dense specimen:11090 

Loose specimen: 10151 

Particle solid density ȡ 2700 kg/m3 

Spherical particle radius r [0.3,0.5] mm 

Contact model Linear stiffness 

Normal stiffness for ball and wall kn=1×105 N/m 

Tangential stiffness for ball and wall ks=1×105 N/m 

Initial void ratio e0 Dense specimen: 0.64 

Loose specimen:0.79 

Target loading path True triaxial 

Damping coefficient x=0.7 

 277 

The implicit Euler algorithm is used to integrate the evolution law. The evolution law in a rate 278 

form can be rewritten as 279 

௡ାଵࡲ െ ௡ࡲ ൌ ௡ାଵሻሺͳߠଵ݄ଷሺܥ ൅ ௡ାଵࣁ௡ାଵԡሻሺࣁଶԡܥ െ ௡ሻࣁ ൅ ௡ାଵࣁା૚ሻ࢔ߠிሺܥሶሺ߉ଷܥ െ  ௡ାଵሻ  (8.1) 280ࡲ

where ߉ሶ is a discrete form of the norm of deviatoric plastic strain rate, i.e. 281 

Ȧሶ ൌ ԡࢋ௡ାଵ െ  ௡ԡ                                                               (8.2) 282ࢋ

We arrive at a sub load step n+1, as: 283 

௡ାଵࡲ ൌ ஼భ௛యሺఏ೙శభሻሺଵା஼మԡࣁ೙శభԡሻሺࣁ೙శభିࣁ೙ሻା௸ሶ ஼య஼ಷሺఏ೙శభሻࣁ೙శభାࡲ೙ଵା஼య௸ሶ                      (8.3) 284 



16 

 

Then, given that the initial fabric tensor ࡲଵ ൌ ௡ାଵǡࣁ ௜ , stress ratiosࡲ ௡ାଵǡࢋ ௡ and deviatoric strains 285ࣁ  ௡ , we adopt these stresses and strain paths obtained by DEM tests as the integration 286ࢋ

paths and calculate the fabric tensor using equation (8.2) for each sub-load step. The parameters 287 

used for theoretical predictions are listed in Table 2. The parameters  ܯ௖௖ ǡ ி௖ܯ ǡ  ி௧ can be 288ܯ

obtained directly from the DEM simulation results directly. From these independent parameters, 289 

shape parameters can be obtained. From equation (3), ܯ௖௧ ൌ ͲǤ͸ʹǢ ݈ଵ ൌ ͲǤ͹ͻͷ. The shape 290 

parameter ݈ଶ  is determined by the definition of ݈ଶ ൌ ி௧ܯ ி௖Τܯ . The shape parameter ݈ଷ  is 291 

estimated from equation (6). Parameters ܥଵ,ܥଶ, ܥଷ, which control the rate of fabric tensor, 292 

cannot be determined directly. They are determined by the regressive analysis through the 293 

known stress, strain rate and fabric information obtained from DEM simulations. The effects 294 

of ܥଵ,ܥଶ, ܥଷ will be investigated through parametric analysis in section 3.2.  295 

Table 2 Parameters of the generalised fabric evolution law 296 ܥଵ ܥଶ ܥଷ ܯ ܿܿܯி௖ ܯி௧ 
0.1 6 7.6 0.78 0.66 0.77 

 297 

3.1 Comparison with DEM simulation results 298 

3.11 Comparison of the stress-strain and volumetric strain curve between DEM and 299 

experimental results 300 

Fig.6 and Fig.7 illustrate the effects of b-value on the responses of stress-strain relationships 301 

and volumetric strain, respectively obtained from DEM simulations and experimental Hollow 302 

Cylinder Testing from Yang et al [12]. Here the dense specimen is taken as an example. It 303 

should be noted that Leighton Buzzard sand has been used by Yang et al [12], which is different 304 

from the samples that are used in our study. Hence, we only focus on the comparison of the 305 

trend other than the exact magnitude, between the DEM simulation results and experimental 306 
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results. Regarding the effects of b-value on the stress strain curves as shown in Fig. 6 (a) and 307 

Fig.7, the trends of both curves obtained from the DEM simulations and laboratory testing, 308 

respectively are consistent. The stress ratio is decreasing with an increase in the b-value. 309 

Volumetric strains start to dilate at the beginning of shearing, and more dilative behaviour are 310 

observed at a greater b-value, for both DEM simulations and experimental findings (Fig.6 b 311 

and Fig.7). The only difference is that the variation of dilatancy is larger showing by the 312 

experimental results, when compared to the DEM simulation results. This difference may be 313 

attributed to the fact that shear band develops quickly for the hollow cylindrical sample; 314 

however, shear band is not considered in our DEM simulations. 315 

Similar experimental investigations regarding effects of b-value on sand behaviours, in terms 316 

of the stress-strain and volumetric strain, have been reported for dense samples in the literature 317 

(e.g., [6, 49]). The investigations regarding the loose samples can be referred to Li et al [15] 318 

and Yang et al [12]. 319 

 320 
Fig.6 DEM simulation results on the effects of b-value on the response of stress-strain 321 

relations and volume change behaviours 322 
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 323 
Fig.7 Hollow Cylinder experimental results on the effects of b-value on the response of 324 

stress-strain relations and volume change behaviours ([12]) 325 

3.12 Evolution of fabric deviator against the stress ratio 326 

Fig.8 presents the evolution of the fabric deviator against the stress ratio for both DEM 327 

simulation results and theoretical results predicted by equation (2) and equation (7), in terms 328 

of dense specimens. Note that equation (2) is recovered from equation (7) by designating that 329 ݈ଶ ൌ ݈ଵǡ ݈ଷ ൌ ͳ. It can be clearly seen from the DEM results that the evolution of the fabric 330 

deviator for different b-values follows a similar pattern. The fabric deviator increases with the 331 

stress ratio at the initial stage of shearing until the stress ratio peaks. After that, the fabric 332 

deviator also achieves the peak value with a slight lag. The fabric deviator begins to decrease 333 

as the decreasing stress ratio continues to reach the critical value.  334 
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 337 

Fig. 8 The fabric evolution under proportional loading (dense sample): stress ratio ߟ vs fabric 338 

deviator ݍܨ: a) DEM simulation results; b) theoretical results from equation (7); c) theoretical 339 

results from equation (2). 340 

The micromechanical interpretation of this phenomenon can be given through the stress-force-341 

fabric (SSF) relationship proposed by Quadfel and Rothenburg [21]. In their study, the stress 342 

ratio was linearly related to the anisotropy degrees for contact normal density (i.e., fabric 343 

deviator) and the rest (e.g., normal contact force, tangential contact force, particle shape). The 344 

fabric deviator would follow the stress ratio to increase to a peak value. However, the 345 

anisotropy degrees for the rest would as well contribute to the stress ratio. According to the 346 

fabric evolution mechanism, the fabric deviator would exhibit a slag before approaching the 347 

peak value, and then decreased with the decreasing of the stress ratio to achieve a critical state. 348 

Yang [50] has analysed the evolution of contact normal by the DEM simulation results to 349 

explain this phenomenon. He presented that the vertical contact orientation is getting narrower, 350 

while the horizontal orientation is getting wider, with the increasing of shearing. The deviatoric 351 

stress ratio was increased since the sample was compressed. At the initial stage, the distribution 352 

of contact normal was homogeneous, demonstrating an isotropic state. The contact normal was 353 

continuously oriented to the vertical direction with the increasing of shearing. The fabric 354 

(c) 
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deviator was increasing until approaching a peak value. After that, the distribution of contact 355 

normal in the vertical direction was generally decreasing until reaching a critical state. 356 

The b-value affects the peak and critical values of the fabric deviator; meanwhile, it affects the 357 

change of fabric deviator against the stress ratio. The peak fabric deviator increases with a 358 

greater b-value, while the peak stress ratio decreases with an increasing b-value, which is 359 

consistent with the observations by Thornton and Zhang [23] (Fig. 9). The evolution law in 360 

equation (7) can quantitatively capture the evolution of the fabric deviator.  361 

 362 

Fig.9 The peak stress ratio ߟ vs fabric deviator ݍܨ (Thornton and Zhang, 2010) 363 

 364 

Fig.10 presents the evolution of the fabric deviator against the stress ratio for both DEM 365 

simulation results and theoretical results predicted by equation (7), in terms of loose specimens. 366 

Likewise, the evolution of the fabric deviator for different b-values follows a similar pattern. 367 

The fabric deviator increases with an increase in the stress ratio. The theoretical predictions 368 

shown in Fig. 10b can well capture the fabric deviator for a loose specimen. It should be noted 369 

that the present fabric evolution law is proposed by characterizing the influence of b-value on 370 

the critical state stress and critical state fabric; however, the critical state is not dependent on 371 

the initial void ratios (Yang [50]). Hence, comparisons between the DEM simulation results 372 
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and theoretical predictions for both dense and loose samples demonstrate the applicability of 373 

the proposed evolution law to cases with various initial void ratios.  374 
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Fig.10 The fabric evolution under proportional loading (loose sample): stress ratio ߟ vs fabric 377 

deviator ݍܨ: a) DEM simulation results; b) theoretical results from equation (7) 378 

 379 

3.13 Evolution of the intermediate fabric ratio against the stress ratio 380 
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Fig. 11 and Fig.12 present the evolution of the intermediate fabric ratio ܨb ( ௕ܨ ൌ381 ሺܨଶ െ ଷሻܨ ሺܨଵ െ ଷሻΤܨ ) against the stress ratio for both DEM simulated results and theoretical 382 

predictions, corresponding to the dense and loose specimens, respectively. It can be seen from 383 

Fig. 11 and Fig. 12 that the evolution law in equation (7) can generally capture the effect of b-384 

value on the evolution of ܨb. For the dense specimen as shown in Fig. 11, in theoretical 385 

prediction, ܨb reaches the b-value quickly before the peak stress ratio. In DEM results, even 386 

after the peak stress ratio, ܨb still evolves towards the value of the intermediated stress ratio. 387 

In the fabric evolution law, it is assumed that the fabric tensor evolves towards the critical state 388 

and at the critical state ܨb is the same as the b-value. With respect to the loose specimen as 389 

shown in Fig.12 a, Fb evolves towards the value of the intermediate stress ratio without a peak 390 

value.  The theoretical predictions show that the fabric tensor evolves towards the critical state, 391 

where a larger final stress ratio is reached with a lower b-value. However as shown in both Fig. 392 

11a and Fig. 12a, in DEM results, the final Fb is not exactly as the b-value, even it evolves 393 

towards b-value. This is because the real critical state is difficult to be achieved in DEM 394 

simulations due to the use of spheres in this study. The shear strain is not fully developed to 395 

give a critical state, since the shear strain is loaded to 40% in this study and the polyhedral 396 

shape used in our study can satisfactorily guarantee homogeneity of the sample [51]. Many 397 

researchers (e.g., [52]) have pointed out that critical states can only be reached at very large 398 

local shear deformations, e.g., the shear strain develops 70% or 100%, which are not always 399 

obtained by biaxial compression tests (both physical and numerical). Things would be different 400 

if non-spherical grains are used, which will be analysed in the future work. 401 
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 404 

Fig. 11 The fabric evolution under proportional loading (dense sample): the stress ratio ߟ vs 405 

the intermediate fabric ratio ܨb: a) DEM simulation results; b) theoretical results from 406 

equation (7); c) theoretical results from equation (2). 407 
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 410 

Fig. 12 The fabric evolution under proportional loading (loose sample): the stress ratio ߟ vs 411 

the intermediate fabric ratio ܨb: a) DEM simulation results; b) theoretical results from 412 

equation (7). 413 

There is a large difference between the prediction and DEM results at a low stress ratio. This 414 

may be because the initial fabric of the sample used in DEM simulations is almost isotropic, 415 

i.e., the fabric deviator is very small. Hence the ܨb is approximately singular. From this point 416 

of view, the DEM simulation results for ܨb are meaningless at very small stress ratios because 417 

they cannot be accurately measured. The gap between the theoretical predictions and DEM 418 

simulation results, may be caused by the fact that the newly proposed evolution law is only 419 

concerned with two main mechanisms of the fabric evolution, i.e., the net rate of contact 420 

creation and migration of contact point, at a particle scale as shown in equation (7). Other 421 

secondary fabric evolution mechanisms, e.g., the convection and diffusion processes of 422 

contacts (due to that the contacts are continually created and broken during the deviatoric 423 

loading after the mitigation of contact points), are not taken into consideration. These 424 

secondary fabric mechanisms have been demonstrated not to be the main concern (e.g., [17, 425 

51]).  426 
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 427 

Theoretical predictions by the evolution law in equation (2) are also presented in Fig.8c and 428 

Fig. 11c. In equation (2), ܥி is taken as a constant independent of b-value. In a theoretical 429 

prediction, the integration stress-strain path is the true stress-strain path taken from DEM 430 

simulation results, and the critical stress ratio decreases with an increasing b-value. From 431 

equation (2.2), we can deduce that the predicted critical fabric anisotropy, determined by ܯி ൌ432 ܥிܯ, also shows a similar trend as shown in Fig.8c. However, DEM results do not exhibit a 433 

similar trend. The predicted peak fabric anisotropy decreases with the increase in the b-value, 434 

which is obviously contradictory to the DEM results. The independency of ܥி and ܥଵ from the 435 

b-value does not affect the predictions of ܨ௕ mainly because the initial fabric is almost isotropic 436 

and the increment of fabric tensor is proportional to the deviatoric stress tensor; hence, ܨ௕ 437 

approaches the intermediate stress ratio quickly in both predictions by both equations (2) and 438 

(7). When the initial fabric tensor is highly anisotropic, the approach of ܨ௕ to the intermediate 439 

stress ratio will be slower, and the performance of the fabric evolution law should be better, 440 

which can be shown by the results of the evolution of ܨ௕ in Hu [42]. 441 

From these comparisons, the generalized evolution law in equation (7) captures the effects of 442 

b-value on the fabric evolution well and greatly improves the performance of the evolution law 443 

in equation (2) in terms of the fabric deviator. 444 

 445 

3.2 Parametric analysis  446 

In the following computations, the shape parameters ݈ଵ and ݈ଶ are assumed to be the same as 447 

those used in the section 3.1. In all cases, the intermediate fabric ratio ܨb and the principal 448 

directions of the fabric tensor quickly approach the stress tensor; hence, in the following 449 

analysis, only the results of the fabric deviator are presented in terms of the dense sample. The 450 
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dense sample is taken as an example for simplicity since the following parameters are not 451 

obviously affected by the initial void ratio. 452 

3.2.1 Parameter ܥଵ and shape parameter ݈ଷ 453 

By comparing Fig. 13a with Fig. 13b, the effects of shape parameters ݈ଷ on the first evolution 454 

mechanism related to the stress ratio tensor can be seen. As noted before, the first fabric 455 

evolution mechanism dominates the fabric evolution at a low stress ratio, because the plastic 456 

strain is negligible at this stage. When ݈ଷ ൌ ͳ, the shape function ݄ଷ becomes independent of 457 

the b-value, and the predicted fabric deviators for different b-values coincide for the same ܥଵ. 458 

However, when ݈ଷ ൌ ͳ ݈ଵΤ ൐ ͳ, the shape function ݄ଷ is an increasing function with a greater 459 

b-value, and fabric deviators increase quicker for a larger b-value. From both Fig. 13a and Fig. 460 

13b, we can see that the rate of the fabric deviator increases with increasing ܥଵ. Fig. 13c and 461 

Fig. 13d present the effects of the parameter ܥଵ and shape parameter ݈ଷ on the evolution law. 462 

From Fig. 13c, we can see that because the second fabric evolution mechanism is also involved, 463 

the influence of ݈ଷ on the fabric evolution decays with an increase in the stress ratio; after the 464 

peak stress ratio, the effects almost totally disappear. It can be seen in Fig. 13c that ܥଵ has a 465 

strong effect on the evolution of ܨ௤ up to the peak fabric deviator. However, after the peak 466 

stress ratio, the influence disappears gradually until the critical stress ratio. Because parameters 467 ܥଵ and ݈ଷ affect the fabric evolution through the first mechanism, their influences disappear 468 

when the influence of the first mechanism diminishes after the peak stress ratio.  469 
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Fig. 13 Influences of ܥଵ and ݈ଶ on the fabric deviator evolution 474 

3.2.2 Parameter ܥଶ  475 

Parameter ܥଶ also affects the fabric evolution through the first evolution mechanism. In Fig. 476 

14a, when the second mechanism is not involved, we can see that ܥଶ mainly affects the rate of 477 

increase of the fabric deviatoric against the stress ratio. When ܥଶ ൌ Ͳ, the relationship between 478 

(c) 

(d) 
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ߟ and ݍܨ  becomes approximately linear. When ܥଶ ് Ͳ , the relationship is approximately 479 

quadric. For some case when simplicity is the primary concern rather than the accuracy, we 480 

can simply set ܥଶ ൌ Ͳ together with another choice of ܥଵ to replace a more accurate set of ܥଵ 481 

and ܥଶ.  Fig. 14b again shows that the effects of ܥଶ last until the peak stress ratio, after which 482 

the effect of  ܥଶ disappears. 483 
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Fig. 14 Influences of ܥଶ on the fabric deviator evolution 486 

3.2.3 Parameter ܥଷ 487 

Parameter ܥଷ affects the fabric evolution through the second evolution mechanism related to 488 

the plastic stress rate. The second mechanism ensures that the fabric evolves towards the critical 489 

fabric. In Fig.15 a, when the first mechanism is not involved, we can see that ܥଷ increases the  490 
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Fig. 15 Influences of ܥଷ on the fabric deviator evolution 493 

rate of the fabric deviator towards the critical fabric deviator. When ܥଷ is smaller, the fabric 494 

evolves slower. ܥଷ does not have obvious effects on the fabric evolution at a low stress ratio; 495 

the influence of ܥଷ increases with an increasing stress ratio. If ܥଷ is not large enough, the 496 

evolution law may not predict a peak fabric deviator. When the first evolution mechanism is 497 

involved, as shown in Fig. 15 b, similar effects of ܥଷ on the fabric evolution can be observed. 498 

(b) 
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 499 

Fig. 16 Influences of the assumption ܥଶ ൌ Ͳǡ ݈ଷ ൌ ͳȀ݈ଵ on fabric deviator evolution 500 

3.2.4 Discussion  501 

From the parametric analysis, parameters ܥଵǡ ଶǡܥ ݈ଷ affect the fabric evolution from the first 502 

mechanism, which dominates the fabric evolution at a low stress ratio. Parameter ܥଷ affects the 503 

fabric evolution from the second mechanism, which dominates the fabric evolution after the 504 

peak stress ratio when considerable plastic strain occurs. From this feature, we can determine 505 

the parameter ܥଷ by fitting curves of the stress ratio vs the fabric deviator after the peak stress 506 

ratio for a specific b-value, e.g., triaxial compression, and determine the parameters ܥଵǡ ଶǡܥ ݈ଷ 507 

by fitting the curves of the stress ratio fabric deviator at a low stress ratio for a specific b-value. 508 

Because the influences of ܥଶǡ ݈ଷ decay quickly due to the existence of the second evolution 509 

mechanism, we can simply assume that ܥଶ ൌ Ͳǡ ݈ଷ ൌ ͳȀ݈ଵ if the data are not available. Under 510 

this assumption, only parameter ܥଵ is left for determination. When the fabric evolution law is 511 

used for constitutive modelling considering the effects of initial and induced anisotropy and b-512 

value, the assumption ܥଶ ൌ Ͳǡ ݈ଷ ൌ ͳȀ݈ଵ can reduce the amount of material parameters. Fig.16 513 
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presents the fabric deviator against the stress ratio for this assumption. From Fig.16, we can 514 

see that this assumption only affects the predicted accuracy at a very low stress ratio.  515 

4 Concluding remarks 516 

In this paper, the effects of b-value on the contact normal-based fabric evolution of granular 517 

materials were incorporated into an extant hybrid fabric evolution law. This new fabric 518 

evolution had the feature of material-frame indifference, rate-independency and uniqueness of 519 

critical state. The new fabric evolution law was validated by DEM simulation results with 520 

various initial void ratios. Conclusions can be drawn as follows: 521 

 The new fabric evolution can capture the effects of b-value on the fabric evolution well 522 

for various initial void ratios, especially for the evolution of fabric deviator Fq. There 523 

was a gap between the theoretical predictions and DEM simulation results for Fb, due 524 

to the fact that only two main mechanisms, i.e., the net rate of contact creation and 525 

migration of contact point, of the fabric evolution were concerned in the present fabric 526 

evolution law. 527 

 Parametric study was carried out to analyse the influences of parameters ܥଵǡ ଶǡܥ ଷǡܥ ݈ଷ. 528 

For simplicity, the setting of parameters for the fabric evolution law in equation (7) can 529 

be reduced to 5 independent parameters, i.e., (ܥଵǡ ଷǡܥ ǡܯ ி௖ܯ ǡ  ி௧).   530ܯ

 The proposed evolution law can act as a fundamental aid for further development of 531 

fabric constitutive modelling of granular materials, accounting for the effects of b-value 532 

and material anisotropy, combined with simple isotropic constitutive models (e.g., the 533 

CASM Model).  534 

In this paper, we limited the stress path in the monotonic loading with a fixed loading direction. 535 

The evolution law has not been validated to consider the b-value on fabric evolution for more 536 

complicated stress path, e.g., pure rotational shearing, which needs further investigation.  537 
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