9 research outputs found

    Deep Learning and Medical Imaging for COVID-19 Diagnosis: A Comprehensive Survey

    Full text link
    COVID-19 (Coronavirus disease 2019) has been quickly spreading since its outbreak, impacting financial markets and healthcare systems globally. Countries all around the world have adopted a number of extraordinary steps to restrict the spreading virus, where early COVID-19 diagnosis is essential. Medical images such as X-ray images and Computed Tomography scans are becoming one of the main diagnostic tools to combat COVID-19 with the aid of deep learning-based systems. In this survey, we investigate the main contributions of deep learning applications using medical images in fighting against COVID-19 from the aspects of image classification, lesion localization, and severity quantification, and review different deep learning architectures and some image preprocessing techniques for achieving a preciser diagnosis. We also provide a summary of the X-ray and CT image datasets used in various studies for COVID-19 detection. The key difficulties and potential applications of deep learning in fighting against COVID-19 are finally discussed. This work summarizes the latest methods of deep learning using medical images to diagnose COVID-19, highlighting the challenges and inspiring more studies to keep utilizing the advantages of deep learning to combat COVID-19

    Transmission Efficiency of Cycloid–Pinion System Considering the Assembly Dimensional Chain

    No full text
    The rotary vector reducer is the core component of industrial robots, and the transmission efficiency is undoubtedly an important indicator of transmission performance. In addition, the assembly dimensional chain leads to clearance between parts, which can have a certain impact on the transmission efficiency. During previous studies, this effect was often ignored. Firstly, the cycloid tooth profile is a relatively large collection of points. Therefore, a more efficient tooth profile model is employed as the basis for the calculation. Secondly, the contact between the cycloid and the pinion is determined by experimental observation to be a point contact rather than a theoretical line contact. Moreover, the dynamics and friction loss models of the cycloid–pinion system are constructed. Finally, the assembly dimensional chain is introduced into the different structural designs. The clearance results were obtained with the extreme value method. The results show that the addition of the pinion sleeve allows the system to have a smoother drive process and a more efficient transmission; this was verified with ADAMS

    Transmission Efficiency of Cycloid–Pinion System Considering the Assembly Dimensional Chain

    No full text
    The rotary vector reducer is the core component of industrial robots, and the transmission efficiency is undoubtedly an important indicator of transmission performance. In addition, the assembly dimensional chain leads to clearance between parts, which can have a certain impact on the transmission efficiency. During previous studies, this effect was often ignored. Firstly, the cycloid tooth profile is a relatively large collection of points. Therefore, a more efficient tooth profile model is employed as the basis for the calculation. Secondly, the contact between the cycloid and the pinion is determined by experimental observation to be a point contact rather than a theoretical line contact. Moreover, the dynamics and friction loss models of the cycloid–pinion system are constructed. Finally, the assembly dimensional chain is introduced into the different structural designs. The clearance results were obtained with the extreme value method. The results show that the addition of the pinion sleeve allows the system to have a smoother drive process and a more efficient transmission; this was verified with ADAMS

    Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal tensile loadings

    No full text
    This paper investigates the progressive damage and failure behavior of unidirectional graphite fiber-reinforced aluminum composites (CF/Al composites) under transverse and longitudinal tensile loadings. Micromechanical finite element analyses are carried out using different assumptions regarding fiber, matrix alloy, and interface properties. The validity of these numerical analyses is examined by comparing the predicted stress-strain curves with the experimental data measured under transverse and longitudinal tensile loadings. Assuming a perfect interface, the transverse tensile strength is overestimated by more than 180% and the transverse fracture induced by fiber failure is unrealistic based on the experimental observations. In fact, the simulation and experiment results indicate that the interface debonding arising from the matrix alloy failure dominates the transverse fracture, and the influence of matrix alloy properties on the mechanical behavior is inconspicuous. In the case of longitudinal tensile testing, however, the characteristic of interface bonding has no significant effect on the macroscopic mechanical response due to the low in-situ strength of the fibers. It is demonstrated that ultimate longitudinal fracture is mainly controlled by fiber failure mechanisms, which is confirmed by the fracture morphology of the tensile samples.Published versio

    Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation

    No full text
    Owing to the complex and long-term treatment of foot wounds due to diabetes and the limited mobility of patients, advanced clinical surgery often uses wearable flexible devices for auxiliary treatment. Therefore, there is an urgent need for self-powered biomedical devices to reduce the extra weight. We have prepared an electrically stimulated MEMS (Micro Electromechanical System) electrode integrated with wearable OPV (Organic photovoltaic). The wearable OPV is constructed of a bio-affinity PET-ITO substrate and a hundred-nanometer organic layer. Under sunlight and near-infrared light irradiation, a voltage and current are supplied to the MEMS electrode to generate an exogenous lateral electric field directed to the center of the wound. The results of in vitro cell experiments and diabetic skin-relieving biological experiments showed the proliferation of skin fibroblasts and the expression of transforming growth factors increased, and the skin wounds of diabetic mouse healed faster. Our research provides new insights for the clinical treatment of diabetes
    corecore