10 research outputs found

    Identifying and characterizing transcriptional regulatory elements from chromosome conformation capture data

    Get PDF
    Which features on the chromatin are responsible for regulating gene transcription? Using promoter contacts obtained from chromosome conformation capture (3C) data as a readout for transcriptional regulation, I modeled how well histone modification marks and chromatin accessibility predict promoter contact frequency. I found that promoter contacts were often located in the same topologically associating domain and that the correlation between promoter contact frequency and each chromatin feature varied across promoter gene expression level, with poised promoters less constrained than active or silent promoters when forming contacts. I applied this knowledge to understand the molecular changes that occurred at several limb development enhancers in a mouse selective breeding experiment for longer tibia called “Longshanks.

    To incise or not and where: SET-domain methyltransferases know

    Get PDF
    The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3–9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability

    ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair

    Full text link
    To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT

    An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice

    Get PDF
    Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response

    To incise or not and where: SET-domain methyltransferases know

    Full text link
    The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability

    ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair

    No full text
    To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT.ISSN:2041-172

    Data from: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice

    Get PDF
    Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response
    corecore