224 research outputs found

    Paramagnetic artifact and safety criteria for human brain mapping

    Get PDF
    Biological effects of magnetic field and their safety criteria, especially effects of gradient magnetic field on the cerebral and pulmonary circulation during functional brain mapping are still unclear. Here we estimated that magnetically induced artifacts for the blood oxygenation level- and flow- based functional magnetic resonance imaging are less than 0.1%, and disturbance in the pulmonary circulation is less than 1.3% even if the field strength of magnetic resonance system is risen up to 10 tesla. These paramagnetic effects are considered to be small and harmless during human brain mapping

    Single-Molecule Analysis of Epidermal Growth Factor Signaling that Leads to Ultrasensitive Calcium Response

    Get PDF
    AbstractQuantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF

    Complex Intramolecular Mechanics of G-actin - An Elastic Network Study

    Get PDF
    Systematic numerical investigations of conformational motions in single actin molecules were performed by employing a simple elastic-network (EN) model of this protein. Similar to previous investigations for myosin, we found that G-actin essentially behaves as a strain sensor, responding by well-defined domain motions to mechanical perturbations. Several sensitive residues within the nucleotide-binding pocket (NBP) could be identified, such that the perturbation of any of them can induce characteristic flattening of actin molecules and closing of the cleft between their two mobile domains. Extending the EN model by introduction of a set of breakable links which become effective only when two domains approach one another, it was observed that G-actin can possess a metastable state corresponding to a closed conformation and that a transition to this state can be induced by appropriate perturbations in the NBP region. The ligands were roughly modeled as a single particle (ADP) or a dimer (ATP), which were placed inside the NBP and connected by elastic links to the neighbors. Our approximate analysis suggests that, when ATP is present, it stabilizes the closed conformation of actin. This may play an important role in the explanation why, in the presence of ATP, the polymerization process is highly accelerated

    A three-dimensional imaging detector based on nano-scale silver-related defects in X- and gamma-ray-irradiated glasses

    Get PDF
    Ag-activated phosphate glass, which is the most commonly known radiophotoluminescent (RPL) material, has the capability to operate not only dosimeters but also two- and three-dimensional (2D and 3D) dose imaging detectors in the same host. This passive detector is based on radiationinduced, optically active nano-scale defects. In this work, the transient-state optical properties of the blue and orange RPL were investigated using a time-resolved spectrum technique for 137Cs and 60Co gamma-ray-irradiated Ag-activated phosphate glass. Specifically, the blue RPL intensity with a decay time of 5 ns as a function of the depth at the vicinity of the surface was systematically examined to clarify an accurate dose distribution within the glass. Moreover, a feasibility study into the use of an RPL Ag-activated phosphate glass detector for fluorescent nuclear track imaging was demonstrated using a confocal fluorescence image microscope for the first time. © 2016 The Japan Society of Applied Physics

    Time-resolved dose evaluation in an X- and gamma-ray irradiated silver-activated glass detector for three-dimensional imaging applications

    Get PDF
    Ag-activated phosphate glass based on the radiophotoluminescence (RPL) phenomenon has been used as the most commonly known RPL material and as an accumulated-type passive detector. In this work, the transient-state evaluation of the dose distributions achieved by X- and gamma-ray irradiations within the Ag-activated phosphate glass was performed using a time-resolved technique for the first time. Specifically, the blue RPL intensity ascribed to the electron-trapped Ag0 centres as a function of the depth at the vicinity of the surface was investigated for different types of radiation and a wide range of energies. In addition, the dose distributions at each layer within the glass confirmed by the time-resolved measurement were compared with those reconstructed by a disk-type transparent glass detector based on the blue RPL with a diameter of 100 mm. © 2015 Elsevier B.V. All rights reserved.24 months Embarg
    corecore