Systematic numerical investigations of conformational motions in single actin
molecules were performed by employing a simple elastic-network (EN) model of
this protein. Similar to previous investigations for myosin, we found that
G-actin essentially behaves as a strain sensor, responding by well-defined
domain motions to mechanical perturbations. Several sensitive residues within
the nucleotide-binding pocket (NBP) could be identified, such that the
perturbation of any of them can induce characteristic flattening of actin
molecules and closing of the cleft between their two mobile domains. Extending
the EN model by introduction of a set of breakable links which become
effective only when two domains approach one another, it was observed that
G-actin can possess a metastable state corresponding to a closed conformation
and that a transition to this state can be induced by appropriate
perturbations in the NBP region. The ligands were roughly modeled as a single
particle (ADP) or a dimer (ATP), which were placed inside the NBP and
connected by elastic links to the neighbors. Our approximate analysis suggests
that, when ATP is present, it stabilizes the closed conformation of actin.
This may play an important role in the explanation why, in the presence of
ATP, the polymerization process is highly accelerated