6 research outputs found

    COI-based barcoding of Chinese vipers (Reptilia: Squamata: Viperidae)

    No full text
    <p>DNA barcoding seeks to assemble a standardized reference library for rapid and unambiguous identification of species, and can be used to screen for potentially cryptic species. The 5′ region of cytochrome oxidase subunit I (COI), which is a mitochondrial DNA (mtDNA) gene fragment, has been proposed as a universal marker for this purpose among animals. However, DNA barcoding of reptiles is still supported only by few datasets compared with other groups. We investigated theutilization of COI to discriminate 34 putative species of vipers, representing almost 92% of the recorded species in China.</p> <p>Based on a total of 241 sequences, our results indicated that the average degree of intraspecific variability (0.0198) tends to be one-sixth the average of interspecific divergence (0.0931), but no barcoding gap was detected between them. The threshold method, BLOG analyses and tree-based methods all can identify species with a high success rate. These results consistently suggested the usefulness and reliability of the DNA barcoding approach in Chinese vipers.</p

    Noninvasive molecular and morphological evidences for an undiscovered population of snow vole in Southern Spain

    Get PDF
    Capturing wild animals can be time consuming and difficult or even impractical. Noninvasive sampling is potentially a cost-effective and efficient means to monitor wild animals, thereby avoiding the need of capture and disturb species in the wild. On the basis of the morphological and genetic analyses of owl pellet contents, a so far undetected European snow vole (Chionomys nivalis) population was discovered in the Sierra Segura mountain range (Southern Spain). The mtDNA sequence from the newly discovered haplotype was compared with sequences from vole populations of the Sierra Nevada and Sierra Peñalara mountain ranges (Spain) and from Churwalden (Switzerland). The nine recovered haplotypes clustered in four distinct lineages according to their geographical origin. The vole sequence from the Sierra Segura owl pellet belonged to a new haplotype, constituting a new lineage. The evolutionary divergence between sequences from the Sierra Segura and other Spanish populations was higher than that among other Spanish haplotypes. The new snow vole haplotype from this new locality duplicates the number of occurrence sites of this critically endangered species in Southern Spain, which is of great interest for further conservation and management plans of the European snow vole in the most southwestern area of its entire distribution range. © 2013 Informa UK, Ltd.Peer Reviewe
    corecore