172 research outputs found

    Building a strong pharmaceutical system for China

    Get PDF
    The world’s most populous country is facing a double healthcare crunch with a rapidly aging population and an explosion in the rate of non-communicable diseases such as diabetes, heart disease, and lung disease. Addressing these diseases will require a robust pharmaceutical system that is able to produce quality, effective, and affordable medicines

    Clinical characteristics and mortality risk factors of mixed bacterial infections in hematopoietic stem cell transplantation recipients

    Get PDF
    Background and objectiveMixed bacterial infections (MBI) is one of the complications after hematopoietic stem cell transplantation (HSCT) and increases the risk of patient death. However, there are few reports specifically on this topic. The purpose of this study was to investigate the clinical characteristics and mortality risk factors of MBI in HSCT recipients.MethodsThe electronic medical records of patients undergoing HSCT were collected. The epidemiological features and antibiotic resistance of patients with and without MBI were compared. Logistic regression and Cox regression were used to identify the risk factors for MBI acquisition and death. R language was used to construct a prediction model for the overall survival of HSCT recipients with MBI.ResultsThe cumulative incidence of MBI was 6.3% and the mortality was 48.8%. Time interval from diagnosis to transplantation > 180 days (HR=2.059, 95% CI 1.042-4.069, P=0.038) and ICU admission after transplantation (HR=2.271, 95% CI 1.053-4.898, P=0.036) were independent risk factors for MBI acquisition. Engraftment period > 20 days (HR=2.273, 95% CI 1.028-5.027, P=0.043), continuous renal replacement therapy (HR=5.755, 95% CI 1.691-19.589, P=0.005) and septic shock (HR=4.308, 95% CI 2.085-8.901, P=0.000) were independent risk factors associated with mortality.ConclusionsMBI has become a serious problem that cannot be ignored after HSCT. It is urgent for clinicians to pay high attention to it and formulate reasonable monitoring and treatment plans to improve the prognosis of patients

    Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer

    Full text link
    We report scanning tunneling microscopy (STM) and spectroscopy (STS) of twisted graphene bilayer on SiC substrate. For twist angle ~ 4.5o the Dirac point ED is located about 0.40 eV below the Fermi level EF due to the electron doping at the graphene/SiC interface. We observed an unexpected result that the local Dirac point around a nanoscaled defect shifts towards the Fermi energy during the STS measurements (with a time scale about 100 seconds). This behavior was attributed to the decoupling between the twisted graphene and the substrate during the measurements, which lowers the carrier density of graphene simultaneously

    Effect of amber powder on endometrial ultrastructure and MAPK pathway in endometriosis model rats

    Get PDF
    Purpose: To explore the therapeutic role of amber powder in endometriosis by investigating its effect on endometrial ultrastructure, ERK1/2, p38MAPK, and NF-κB mRNA pathways and CSRC/EFR/ERK1/2 proteins. Methods: Sprague Dawley (SD) rats were randomly divided into blank group, disease model group (untreated), amber powder high-dose group, amber powder medium-dose group, amber powder lowdose group and danazol group. Morphological changes in endometrial cells were studied using transmission electron microscopy. The expression of ERK1/2, p38MAPK, and NF-κB mRNA in endometrial tissues of each group was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry was utilized for the measurement of C-SRC/EFR/ERK1/2 pathway protein expression. Results: The endometriosis rats treated with a high-, medium- and low-dose amber powder showed a decrease in the volume of ectopic lesions, compared with the untreated disease model group. The expressions of ERK1/2, p38MAPK, NF-κB mRNA, and C-SRC/EFR/ERK1/2 protein were higher in the eutopic and ectopic endometrial tissues in untreated disease group than those in normal control group. Moreover, treatment of endometriosis rats with amber powder revealed a reduction in the expressions of ERK1/2, p38MAPK, NF-κB mRNA and C-SRC/EFR/ERK1/2 proteins in eutopic and ectopic endometrium tissues. Conclusion: Amber powder reduces ectopic lesions and slows down the development of endometriosis, probably via inhibition of MAPK pathway genes in eutopic and ectopic endometrial tissues

    Rice lipid transfer protein, OsLTPL23, controls seed germination by regulating starch-sugar conversion and ABA homeostasis

    Get PDF
    Seed germination is vital for ensuring the continuity of life in spermatophyte. High-quality seed germination usually represents good seedling establishment and plant production. Here, we identified OsLTPL23, a putative rice non-specific lipid transport protein, as an important regulator responsible for seed germination. Subcellular localization analysis confirmed that OsLTPL23 is present in the plasma membrane and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-mediated genome editing, and osltpl23 lines significantly germinated slower and lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble sugar content may be a causal agent for the delayed seed germination of osltpl23 mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid (ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1, OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23 mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1, OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found that osltpl23 mutants displays weakened early seedling growth, with elevated gene expresssion of ABA catabolism genes and repressive transcription response of defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1. Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice seed germination and early seedling growth via modulating endogenous ABA homeostasis. Collectively, our study provides important insights into the roles of OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on seed germination and early seedling growth, which contributes to high-vigor seed production in rice breeding

    4,4′-Dibromo-7,7′-dimeth­oxy-1,1′-spiro­biindane

    Get PDF
    In the title compound, C19H18Br2O2, the dihedral angle between the two benzene rings of the spiro­biindane molecule is 70.44 (8)°. In the crystal, mol­ecules are inter­connected along the c axis by C—H⋯O hydrogen bonds and π–π stacking [centroid–centroid distance = 3.893 (2) Å] inter­actions, forming an infinite chain structure. The chains are further inter­connected through another set of C—H⋯O hydrogen bonds, forming layers approximately parallel to the bc plane

    FMRFamide-Like Peptide 22 Influences the Head Movement, Host Finding, and Infection of Heterodera glycines

    Get PDF
    The FMRFamide-like peptides (FLPs) represent the largest family of nematode neuropeptides and are involved in multiple parasitic activities. The immunoreactivity to FMRFamide within the nervous system of Heterodera glycines, the most economically damaging parasite of soybean [Glycine max L. (Merr)], has been reported in previous research. However, the family of genes encoding FLPs of H. glycines were not identified and functionally characterized. In this study, an FLP encoding gene Hg-flp-22 was cloned from H. glycines, and its functional characterization was uncovered by using in vitro RNA interference and application of synthetic peptides. Bioinformatics analysis showed that flp-22 is widely expressed in multiple nematode species, where they encode the highly conserved KWMRFamide motifs. Quantitative real-time (qRT)-PCR results revealed that Hg-flp-22 was highly expressed in the infective second-stage juveniles (J2s) and adult males. Silencing of Hg-flp-22 resulted in the reduced movement of J2s to the host root and reduced penetration ability, as well as a reduction in their subsequent number of females. Behavior and infection assays demonstrated that application of synthetic peptides Hg-FLP-22b (TPQGKWMRFa) and Hg-FLP-22c (KMAIEGGKWVRFa) significantly increased the head movement frequency and host invasion abilities in H. glycines but not in Meloidogyne incognita. In addition, the number of H. glycines females on the host roots was found to be significantly higher in Hg-FLP-22b treated nematodes than the ddH2O-treated control J2s. These results presented in this study elucidated that Hg-flp-22 plays a role in regulating locomotion and infection of H. glycines. This suggests the potential of FLP signaling as putative control targets for H. glycines in soybean production

    Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects

    Full text link
    Here we report a facile method to generate a high density of point defects in graphene on metal foil and show how the point defects affect the electronic structures of graphene layers. Our scanning tunneling microscopy (STM) measurements, complemented by first principle calculations, reveal that the point defects result in both the intervalley and intravalley scattering of graphene. The Fermi velocity is reduced in the vicinity area of the defect due to the enhanced scattering. Additionally, our analysis further points out that periodic point defects can tailor the electronic properties of graphene by introducing a significant bandgap, which opens an avenue towards all-graphene electronics.Comment: 4 figure

    Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene

    Full text link
    Theoretical research has predicted that ripples of graphene generates effective gauge field on its low energy electronic structure and could lead to zero-energy flat bands, which are the analog of Landau levels in real magnetic fields. Here we demonstrate, using a combination of scanning tunneling microscopy and tight-binding approximation, that the zero-energy Landau levels with vanishing Fermi velocities will form when the effective pseudomagnetic flux per ripple is larger than the flux quantum. Our analysis indicates that the effective gauge field of the ripples results in zero-energy flat bands in one direction but not in another. The Fermi velocities in the perpendicular direction of the ripples are not renormalized at all. The condition to generate the ripples is also discussed according to classical thin-film elasticity theory.Comment: 4 figures, Phys. Rev.
    corecore