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Seed germination is vital for ensuring the continuity of life in spermatophyte. High-
quality seed germination usually represents good seedling establishment and plant
production. Here, we identifiedOsLTPL23, a putative rice non-specific lipid transport
protein, as an important regulator responsible for seed germination. Subcellular
localization analysis confirmed that OsLTPL23 is present in the plasma membrane
and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-
mediated genome editing, and osltpl23 lines significantly germinated slower and
lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement
showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble
sugar content may be a causal agent for the delayed seed germination of osltpl23
mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid
(ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1,
OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23
mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1,
OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found
that osltpl23 mutants displays weakened early seedling growth, with elevated gene
expresssion of ABA catabolism genes and repressive transcription response of
defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1.
Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice
seed germination and early seedling growth via modulating endogenous ABA
homeostasis. Collectively, our study provides important insights into the roles of
OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on
seed germination and early seedling growth, which contributes to high-vigor seed
production in rice breeding.
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Introduction

Seed vigor in plant determines seed germination, seedling emergence and growth, and seed
storage ability under favorable or adverse environmental conditions (Sun et al., 2007; Finch-
Savage and Bassel, 2016). Seed germination, to some extent, is synonymous with seed vigor
(Finch-Savage and Bassel, 2016; Leprince et al., 2017), in which the germination rate is usually
used as morphological indicator of seed viability (Wang et al., 2010). High-quality seed
germination results in robust and healthy post-germination seedling growth, with the
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ability to withstand stressful environment (Foolad et al., 2007).
Therefore, identification of the genes responsible for seed
germination will contribute to develop high-vigor plant varieties
and crop production.

The phytohormone ABA acts an indispensable roles in
inhibiting seed germination and promoting seed dormancy
(Penfield, 2017). The degradation of ABA content in seeds
alleviates the ABA signaling pathway during seed imbibition
(Preston et al., 2009). The reports from independent groups
have demonstrated that the ABA-responsive transcription
factors, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABSCISIC
ACID INSENSITIVE 4 (ABI4) and ABSCISIC ACID
INSENSITIVE 5 (ABI5), exert distinct roles in germinated seeds
and early seedling growth. The loss-of-function alleles of ABI3
reduces the ABA-mediated inhibition during seed germination and
post-germination growth (Ding et al., 2014). Salinity-induced ABI4
repress seed germination and post-germination growth by
promoting ROS accumulation (Luo et al., 2021). ABI5 enhances
exogenous ABA-mediated developmental arrest from seed
germination to vegetative growth (Lopez-Molina et al., 2001).
Soluble sugar is another important regulator in seed
germination and post-germination seedling development in
plants (Dekkers et al., 2004; Zhu et al., 2009; Zhao et al., 2018).
The germination delay of plant seeds by exogenous glucose results
from the suppressive ABA catabolism (Dekkers et al., 2004; Zhu
et al., 2009), whereas exogenous ABA application inhibits seed
germination through locally restricting glucose availability of the
embryonic hypocotyl (Xue et al., 2021; Deng et al., 2020). In early
seedling growth, the inhibitory effect of exogenous glucose is
accomplished by through ABI4-mediated sugar-ABA signaling
pathway (Arroyo et al., 2003; Bossi et al., 2009; Li et al., 2014a).
However, the interaction of endogenous ABA and soluble sugar in
plant seed germination and early seedling growth is still
mysterious.

Plant non-specific lipid transfer proteins (nsLTPs) are small
basic lipid-binding proteins, which precursors typically harbour an
hydrophobic signal peptide in N-terminal and an internal
hydrophobic molecules binding cavity forming by an conserved
eight cysteine motif (8CM, C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C)
(Kader, 1996; Salminen et al., 2016; Meng et al., 2018; Fleury et al.,
2019). In rice, the nsLTPs, reportedly, reside in the plasma
membrane (Li et al., 2020; Zhao et al., 2020; Chen et al., 2022),
cytoplasm (Fujino et al., 2008; Li et al., 2020) and nucleolus (Fujino
et al., 2008), with the function in abiotic stress (Guo et al., 2013;
Zhao et al., 2020), pollen development (Zhang et al., 2010; Li et al.,
2020; Tao et al., 2020; Chen et al., 2022), plant height (Li et al.,
2014b; Ding et al., 2014), as well as embryo development and seed
germination (Wang et al., 2015). There are only two investigations
of nsLTPs on early seedling growth and seed germination in rice.
The OsLTPL159 allele distributed in different rice groups confers a
distinct seedling cold tolerance (Zhao et al., 2020), and OsLTPL36
contributes to rice embryo development, seed quality, seed
germination and early seedling growth (Wang et al., 2015).
Whereas, the association between ABA, soluble sugar, and
nsLTPs-mediated seed germination and post-germination
seedling growth awaits disclosure.

In this work, we characterized a rice plasma membrane- and
nucleus-localized nsLTP, OsLTPL23. Site-specific mutation of
OsLTPL23 resulted in an impeded seed germination and weakened

seedling growth. Starch-sugar analysis implied that OsLTPL23 protein
serves as an alpha-amylase inhibitor in seed. Prompted by the
messenger RNA levels of OsABIs, OsNCEDs and OsABA8oxs,
endogenous ABA contributed to OsLTPL23-dependent phenotype
in seed germination and early seedling growth. Summarily, these
findings indicated that OsLTPL23 promotes rice seed germination
and post-germination seedling growth.

Materials and methods

Plant growth conditions

The germinated rice seeds were grown in a plant greenhouse at
30°C during 14 h daytime and 25°C with 10 h night under 70%
humidity. All seeds were harvested at maturity stage, and stored at
room temperature after drying at 42°C for 7 days.

Vector construction and rice transformation

The konck-out vector Cas9-OsLTPL23-gRNA was generated as
previously reported (Xu et al., 2014). The specific sgRNA
sequences targeted for OsLTPL23 were inserted into the
pHUN4c12 vector digested with Bsa I-HF using T4 DNA ligase
reaction (2011A; Takara, Japan). The resultant construct Cas9-
OsLTPL23-gRNA was transformed into the japonica variety NIP
through the Agrobacterium tumefaciens strain EH105-mediated
stable transformation (Nishimura et al., 2006). Resistant rice calli
were vigorously grown in hygromycin-containing medium, and
finally transferred to regeneration medium to obtain transgenic
plants.

Transgenic-free mutants screening

To identify the osltpl23 mutants, the genomic DNA was extracted
from the leaves of hygromycin-resistant plants using CTAB method,
and then used as template to perform PCR amplification with
OsLTPL23-Cas9-detection primers (Supplementary Table S4). All
the DNA sequences of PCR products from the above plants were
directly determinate to identify Cas9-editing events using Sanger
sequencing techniques. Homozygous mutants and heterozygotes
were indicated as normal sequencing chromatograms carrying
simple indels and superimposed sequencing chromatograms,
respectively.

To determine transgenic-free mutants, the T1 generation plants of
Cas9-cutting lines were analyzed by PCR amplification with HPT-
specific primers (Supplementary Table S4). The Cas9-OsLTPL23-
gRNA vector and genomic DNA of NIP were chosen as positive
control and negative control, repectively. The HPT-negative mutation
lines were marked as transgenic-free mutants.

Seed germination

Fifty seeds per replicate of each osltpl23 mutants and NIP were
germinated on Petri dishes containing moistened paper towels at 26°C
for 6 days. The seed germination criterion and germination rate
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determination were as stated in Wang et al. (2021). The seeds
germination assay was conducted in triplicate.

Quantitative reverse transcription-PCR (qRT-
PCR) assay

Total RNA was isolated from the germinating seeds (12, 24, 48,
and 72 h post imbibition (hpi)) and various tissues at two
developmental stages (root, leaf and sheath of five-leaf stage
seedlings; stem, flag leaf and spike of booting stage plants) of NIP,
and two-week-old seedlings of NIP, osltpl23-1 and osltpl23-2 mutants
using the TRIzol™ reagent (15596-026; Invitrogen, Carlsbad,
California, United States). 1 μg total RNA was used to first-strand
cDNA synthesis by the ReverTra Ace qPCR RT Master Mix with
gDNA Remover (FSQ-301; TOYOBO, Osaka, Japan). The qRT-PCR
was performed using TransStart® Tip Green qPCR SuperMix (+Dye I)
(AQ142-11; TransGen, Beijing, China) with corresponding primers
on CFX96® Real-Time PCR system (Bio-Rad, Hercules, California,
USA), and OsACTIN genes was used as the internal control for
normalization. A complete list of primers is included in
Supplementary Table S4. The relative transcript levels of indicated
genes were quantified by 2−ΔΔCT method from the qRT-PCR data of
three biological replicate experiments with three independent repeat
(Schmittgen and Livak, 2008).

Subcellular localization

The protein-coding sequences of OsLTPL23 (without the
termination codon) were cloned from the cDNA of 2-weeks old
NIP seedlings, and inserted into the PMDC43 and the pSAT6-
eYFP-N1 vector, respectively. Then, the plasma membrane marker
AtPIP2A-mCherry (Cutler et al., 2000) or nucleus marker bZIP73-
mCherry (Liu et al., 2019) were separately introduced into N.
benthamiana epidermal cells with PMDC43-OsLTPL23 construct
via Agrobacterium tumefaciens strain EH105-mediated transient
transformation or infiltrated into rice protoplasts with pSAT6-
OsLTPL23-eYFP-N1 construct using polyethylene glycol (PEG)-
mediated transformation method, respectively (Chen et al., 2008).
The fluorescence intensity of recombinant proteins was photographed
at ZEISS LSM 710 NLO (Carl Zeiss, Oberkochen, Germany).

Phylogenetic analysis

The primary sequences of OsLTPL23 were blasted and aligned to
the plant homologues in NCBI and Phytozome database. A neighbour-
joining phylogenetic tree between OsLTPL23 and its homologues was
constructed by MEGA X with the Poisson correction model, pairwise
deletion for gaps/missing data treatment and 1,000 of bootstrap
replicates (1,000 replicates) (Kumar et al., 2016).

Starch and soluble sugar content
measurement

The dry rice seeds were successively ground into fine powder
filtered with 100-, 200-, and 400-mesh sieves. The amount of starch

and soluble sugar was separately quantified with 0.03 g and 0.2 g
samples according to the manufacturer’s instructions (BC0705,
BC0035; Solarbio, Beijing, China).

Data analysis

All experimental data were performed with GraphPad Pism 8
software and statistical analyses among samples were compared using
Student’s t-test at the 5% and 1% levels of probability.

Results

OsLTPL23 may be associated with seed
germination in rice

To reach a better understanding of nsLTP-based regulation of seed
vigor and identify the nsLTPs responsible for seed germination in rice,
we functionally analyzed the reported rice nsLTP members with gene
expression in seed or embryo (Wang et al., 2012). Through
phylogenetic relationship, we found that a total of 15 nsLTP-
encoding proteins can be classified into five clade (Figure 1A),
which agrees with previous investigation (Wang et al., 2012).
Followed the tissue expression profiles from the Plant Regulomics
database, the transcripts of the nsLTP genes, OsLTPL8, OsLTPL9,
OsLTPL22 and OsLTPL23, in clade II were specifically enriched in the
developing seed, with high expression in 5 days after pollination
(DAP)-seed and -embryo and low accumulation in 5 DAP-
endosperm, suggesting that this clade may be involved in
carbohydrates accumulation during rice seed maturation
(Figure 1B; Supplementary Table S1). The phytohormones ABA
negatively regulates seed germination and maintains seed
dormancy (Finkelstein et al., 2008; Rajjou et al., 2012; Penfield,
2017). To determine the candidate genes controlling seed
germination, the responsive profiles of these nsLTP genes to ABA
were downloaded from TENOR (https://tenor.dna.affrc.go.jp/) and
investigated. The transcript abundance of OsLTPL5, OsLTPL8,
OsLTPL9, OsLTPL11, OsLTPL22, OsLTPL23, OsLTPL26 and
OsLTPL28 genes gradually decreased along ABA treatment,
providing the possibility of OsLTPL8, OsLTPL9, OsLTPL22 and
OsLTPL23 in regulating seed germination (Figure 1C;
Supplementary Table S2). Further, we found that the transcription
expression of three genes, OsLTPL16, OsLTPL23 and OsLTPL26, are
induced in imbibed seeds, which reinforces the reliability ofOsLTPL23
participating in seed germination (Figure 1D; Supplementary Table
S3; Galland et al., 2014). Collectively, these data pointed to the idea
that OsLTPL23 is the most candidate related to seed vigor and seed
germination in these rice nsLTP members.

OsLTPL23 encodes a non-specific lipid
transfer protein

To ascertain the potential relationship between OsLTPL23 and
seed germination, a phylogram of OsLTPL23 and its plant
homologues was firstly generated through the amino acid (aa)
sequence based neighbor-joining algorithm (Figures 2A, B).
Homology analysis in 7 model plants displayed that the proteins
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high identity to OsLTPL23 are presented in gramineous C3 plants,
including Triticum aestivum, Hordeum vulgare, Brachypodium
distachyon. Unfortunately, there were no reports on the function of
those proteins in seed germination. By the protein structure analysis,
OsLTPL23 encodes a typical plant non-specific lipid transfer protein
with 120 amino acids, including one 26 aa N-terminal hydrophobic
signal peptide and the 8 CM in bifunctional inhibitor/plant lipid
transfer protein/seed storage helical domain (Figure 2A, C).
Subsequently, we isolated total RNA from six tissue samples of
NIP at vegetative growth and reproductive growth stages to verify
the tissue specific expression pattern of OsLTPL23. The qRT-PCR
analysis indicated that the highest gene expression level of OsLTPL23
is presented in rice spikes, followed by that in roots and leaves at five-
leaf stage, and decreased in flag leaves, stem and sheathes at booting
stage (Figure 3A). These results basically agreed with the data from the
Plant Regulomics database, supporting the function of OsLTPL23 in
seed development.

Several investigations showed that the rice nsLTP family members
specifically localized to the plasma membrane, cytoplasm and nucleus
to regulate the cold tolerance, fertility, seed development and low-
temperature germinability, respectively (Fujino and Sekiguchi, 2011;
Li et al., 2020; Zhao et al., 2020; Chen et al., 2022). To detect the
functional compartment of OsLTPL23 at subcellular level, we
monitored the fluorescence intensity of OsLTPL23 recombinant
protein in different transient expression systems. The fluorescence
signal in Nicotiana benthamiana exhibited that the fusion protein
GFP-OsLTPL23 clearly localizes to the nucleus and colocalizes with

the plasma membrane marker AtPIP2A-mCherry (Figure 3B). To
further determine the subcellular localization of OsLTPL23, pSAT6-
eYFP, OsbZIP73-mCherry, AtPIP2A-mCherry and pSAT6-
OsLTPL23-eYFP constructs were also introduced into the rice
protoplast. Laser scanning confocal microscope showed that the
recombinant protein OsLTPL23-eYFP separately colocalizes with
the plasma membrane marker AtPIP2A-mCherry and nucleus
marker OsbZIP73-mCherry in rice (Figure 3C), implying that
OsLTPL23 may be involved in transcriptional regulation, as well as
plasma membrane biological function.

The osltpl23 mutants are created by genome
editing

To explore the involvement of OsLTPL23 gene in rice seed
germination, the generation of osltpl23 mutants in the NIP
background was achieved through Cas9-induced gene editing
(Figure 4A). Specifically, the target sequences were located at the
position of 21–40 bp in the first exon of OsLTPL23 (Figure 4B). After
the sequencing of site-specific PCR products, 12 osltpl23 mutants,
including four homozygous and eight heterozygous mutations, were
recovered from 21 T0 hygromycin-resistant transgenic plants (57.1%).
To obtain more allele mutation types, the zygosity analysis of eight
heterozygous mutants were carried out through the T vector
sequencing of PCR products. Based on the results of zygosity
analysis, 33.3%, 19.0% and 33.3% of the mutations were separately

FIGURE 1
OsLTPL23 is specific expressed in seed development and germination process of rice. (A) Phylogenetic tree of the reported rice nsLTP genes expressed in
seed or embryo. (B) Tissue expression profiles of rice nsLTP genes from Plant Regulomics. (C) Transcription patterns of rice nsLTP genes response to ABA
treatments. Blue and orange red boxes represent decreased and enriched transcript abundance, respectively. The gene expression level at 0 h after ABA
treatment serves as control. (D) Transcription patterns of rice nsLTP genes in the imbibed embryo and endosperm under water treatment, respectively.
Blue and orange red boxes represent down-regulated and up-regulated expression level, respectively.
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FIGURE 2
Sequence analysis of OsLTPL23 protein. (A) Primary sequence alignment of OsLTPL23 with homologues. Conserved eight-cysteine motif are
represented by red rectangles. (B) Phylogenetic tree of OsLTPL23. Ta, Triticum aestivum; At, Arabidopsis thaliana; Zm, Zea mays; Sb, Sorghum bicolor; Si,
Setaria italica; Os, Oryza sativa; Bd, Brachypodium distachyon; Hv, Hordeum vulgare. (C) Signal peptide prediction of OsLTPL23. The red arrows indicate the
predicted signal peptide cleavage site using SignalP4.1 (https://services.healthtech.dtu.dk/service.php?SignalP-4.1).

FIGURE 3
Tissue expression pattern and subcellular localization of OsLTPL23. (A) OsLTPL23 transcription expression in various tissues of NIP using qRT-PCR. (B)
Subcellular localization of GFP-OsLTPL23 fusion protein inN. benthamiana epidermal cells. Plasmids PMDC43 and PMDC43-OsLTPL23 were introduced into
tobacco leaf cells by Agrobacterium-mediated transformation, respectively. Scale bars, 20 μm. (C) Subcellular localization of OsLTPL23-eYFP fusion protein
in rice protoplast. Plasmids pSAT6-eYFP-N1 and pSAT6-OsLTPL23-eYFP-N1 were introduced into rice protoplast by PEG-mediated transformation,
respectively. Scale bar, 10 μm OsbZIP73 (bZIP transcription factor, nucleus marker, Os09g0474000); AtPIP2A (plasma membrane intrinsic protein 2A,
At3g53420).
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nucleotide insertions, deletions and substitutions, and others were
characterized by the chimeric mutation (Figure 4C; Supplementary
Figure S1).

To obtain the transgene-free plants, all the T0 mutants were self-
pollinated, and we isolated two T-DNA-free homozygous lines from
T1 generation of osltpl23-1 and osltpl23-2 mutants. As shown in
Figures 4C, D, the osltpl23-1 and osltpl23-2 mutants separately
harbored a 1 bp deletion and insertion between nucleotide 37 and
39 of the OsLTPL23 coding region, which result in a truncated and
recombinant variant of the OsLTPL23 respectively. Besides, we
noticed that osltpl23-3 and osltpl23-4 mutants produce nearly
identical protein variants with osltpl23-2 mutant. Given no
differentially expressed OsLTPL23 in all the osltpl23-2, osltpl23-3,
and osltpl23-4 mutants (Supplementary Figure S2), the osltpl23-1
and osltpl23-2 mutants were subjected to further investigation.

The rice mutants osltpl23 displays slower and
lower seed germination

To validate the germination-responsiveness of OsLTPL23, seeds
from wild type NIP, osltpl23-1 and osltpl23-2 mutants were harvested
and stored. The seeds stored for 18 months post-harvest were soaked
in distilled water to calculate the germination rate. The

osltpl23 mutants supported distinctly slower germination before
24 hpi and lower germination percentage at 24 hpi to 96 hpi than
NIP (Figures 5A–C). At 24 hpi, the germination percentage of NIP
(11.83%) was clearly higher than that of osltpl23 (0%). Subsequently,
there were a sharply augmented difference between NIP and osltpl23
mutants at 48 hpi and 72 hpi, which the germination percentages of
NIP were 2.27- and 2.76-fold, and 1.73- and 1.86-fold that of osltpl23-1
and osltpl23-2 mutant, respectively. Eventually, the germination
percentages of NIP and osltpl23 mutants at 96 h reached 98.20%、
76.00% and 69.33%, respectively (Figure 5C). These data indicated that
the dysfunction of OsLTPL23 delays and inhibits seed germination.

OsLTPL23 blocks the hydrolysis of starch into
soluble sugar

In previous protein structure analysis, OsLTPL23 has a
bifunctional inhibitor/plant lipid transfer protein/seed storage
helical domain. Further functional domain analysis showed that it
may act as trypsin-alpha amylase inhibitor (https://www.ebi.ac.uk/
interpro/entry/pfam/PF00234/). In rice, alpha-amylas isozymes are
critical to convert the stored starch into soluble sugar for nourishing
the seedling establishment (Damaris et al., 2019). To validate the role
of OsLTPL23 in the conversion between starch and soluble sugar, we

FIGURE 4
Cas9-mediated OsLTPL23 gene mutation in rice. (A) Target site sequence and CRISPR/Cas9 vector structure. Capital letters indicates the sgRNA
sequences, and three underlined lowercase letters represent the protospacer adjacent motif (PAM). The expression of Cas9, sgRNA and hygromycin (HPT) is
separately driven by the maize ubiquitin promoter (Pubi), rice U3b promoter (OsU3b) and 35S promoters (pd35S). (B) Schematic of the OsLTPL23 gene
structure. Black rectangles, gray rectangles and black lines represent exon, untranslated region (UTR) and intron, respectively. (C) The gene editing events
in the four rice homozygous mutants. The underlined nucleotide sequences are PAM. The red lines and capital letters represent deleted nucleotide and
inserted nucleotide, respectively. (D) Predicted protein sequences encoded by mutational OsLTPL23 in osltpl23 mutants.
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measured the starch and soluble sugar contents in the dry seeds of
NIP, osltpl23-1 and osltpl23-2mutants. The results uncovered that the
starch contents of osltpl23-1 and osltpl23-2 mutants, with separately
268.90 mg/g and 236.17 mg/g, were significantly reduced compared
with NIP (332.73 mg/g), whilst the soluble sugar contents were
increased 34.11% and 48.19% relative to 14.98 mg/g in NIP
(Figures 5D, E). There are reports that soluble sugar delays seed
germination (Zhu et al., 2009), we speculated that the high soluble
sugar contents may be a contributor responsible for the slower
germination in osltpl23 mutants.

Endogenous ABA participates in OsLTPL23-
mediated seed germination

ABA is a central player in controlling seed dormancy and
germination (Finkelstein et al., 2008; Rajjou et al., 2012; Penfield,
2017). To investigate whether ABA is involved OsLTPL23-trigger seed
germination reduction, we firstly checked the expression level of ABA-
responsive genes OsABI3, OsABI4 and OsABI5, which are major
downstream components of ABA signalling pathway in seed
dormancy and seed germination (Lopez-Molina et al., 2001; Liu
et al., 2013; Luo et al., 2021; He et al., 2022). The transcripts of
OsABI3 and OsABI5 in osltpl23 mutants obviously accumulated
compared with those of NIP within 72 hpi, whereas the relative
OsABI4 expression in osltpl23-1 mutant were only higher than NIP
at 24 hpi (Figures 6A–C). Pioneer report has demonstrated that the
ABA content of abi4 seeds was comparable with wild type after

stratification (Shu et al., 2013). Therefore, we speculated that the
amounts of ABA in osltpl23 mutants may be higher than that in NIP.

To investigate whether endogenous ABA is increased in osltpl23
mutants, the transcription levels of crucial ABA synthesis and
metabolism genes (Figures 6D–J), including OsNCEDs (ABA
biosynthesis) and OsABA8oxs (ABA degradation), were quantified
among the imbibed seeds of NIP, osltpl23-1 and osltpl23-2 mutants.
The gene transcription amounts of OsNCED1, OsNCED2, OsNCED3,
and OsNCED4 were clearly upregulated in osltpl23 lines, compared
with NIP within 12–48 hpi, whilst the increase trend of all the
OsNCEDs were blocked at 72 hpi (Figures 6D–G). Concurrently,
the mRNA amounts of OsABA8ox2 and OsABA8ox3 were
markedly abolished in osltpl23 mutants relative to those in NIP at
12–72 hpi, whereas the transcription expression of OsABA8ox1 was
gradually decreased within 3 days post imbibition (Figures 6H–J).
Taken together, these data exposed that the disruption of OsLTPL23
may promote the endogenous ABA accumulation, thus leading to
lower germination rate of osltpl23 mutants.

The osltpl23 mutants develop weakened
seedlings

The transcript enrichment of OsABI3, OsABI5, OsNCEDs, and
accumulative soluble sugar observed in osltpl23 mutants during seed
germination provide a indicative cue that OsLTPL23 may regulate
post-germination growth of rice. To verify the possibility, we observed
the growth phenotype of 2-week old seedlings grown in greenhouse.

FIGURE 5
OsLTPL23 positively regulates rice seed germination. (A) Phenotypes of germinated seeds of NIP, osltpl23-1 and osltpl23-2 plants after 3 days. Scale bar,
2 cm. (B) Phenotypes of germinated seeds of NIP, osltpl23-1 and osltpl23-2 plants after 6 days. Scale bar, 2 cm. (C)Germination percentage of wild-type NIP,
osltpl23-1 and osltpl23-2 mutant plants. (D) Starch content determination of dry seeds in NIP, osltpl23-1 and osltpl23-2 plants. (E) Soluble sugar content
determination of dry seeds in wild-type NIP, osltpl23-1 and osltpl23-2 plants. Values are the mean ±standard deviations of three biological replicates.
Significance were generated by Student’s t-test with *p < .05 and **p < .01.
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Phenotypic investigation showed that the plants from osltpl23-1 and
osltpl23-2 lines have significantly lower seedling height, with 30.74%
less and 37.35% less, than the control plants, respectively (Figures 7A, B).

To confirm whether the post-germination seedling growth inhibition
of osltpl23 lines is ABA-dependent, we detected the mRNA levels of
plant stress hormone-related genes in 2-week old seedlings between

FIGURE 6
OsLTPL23 alters the transcriptional expression of the genes in ABA-responsive, -biosynthesis and -metabolism pathway during seed germination. (A–C)
The OsABI3 (A), OsABI4 (B) and OsABI5 (C) expression in germinated seeds among NIP, osltpl23-1 and osltpl23-2 plants. (D–J) The relative gene expression
levels of ABA biosynthesis genes OsNCED1 (D), OsNCED2 (E), OsNCED3 (F) and OsNCED4 (G), and ABA metabolism genes OsABA8ox1 (H), OsABA8ox2 (I),
and OsABA8ox3 (J) in germinated seeds among NIP, osltpl23-1 and osltpl23-2 plants. The gene expression levels of NIP at 12 hpi was used as control.
Values are the mean ±standard deviations of three biological replicates. Significance were generated by Student’s t-test with *p < .05 and **p < .01.

FIGURE 7
The osltpl23mutants have weakened seedling growth. (A) Growth potential of NIP, osltpl23-1 and osltpl23-2mutants after 14 days. Scale bar, 4 cm. (B)
The plant height of 14 days old seedlings in NIP, osltpl23-1 and osltpl23-2mutants. Scale bar, 4 cm. (C) Responsive expression of ABA-, ethylene-, JA- and SA-
related genes of 14 days old seedlings in NIP, osltpl23-1 and osltpl23-2mutants. (D) Expression level of defense-responsive genes of 14 days old seedlings in
NIP, osltpl23-1 and osltpl23-2mutants. Values are themean±standard deviations of three biological replicates. Significancewere generated by Student’s
t-test with *p < .05 and **p < .01.
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mutants and NIP. The qRT-PCR data displayed that all three genes,
OsABA8ox1, OsABA8ox2 and OsABA8ox3 in ABA metabolic pathway
are evidently increased in osltpl23 mutants relative to those of NIP,
whereas ethylene signal transduction geneOsEiN3, salicylic acid signal
pathway gene OsNPR1, and jasmonic acid-responsive transcription
factor OsMYC2 have abortive or minor transcript enrichment in
osltpl23 lines compared with those of NIP (Figure 7C). These data
jointly pinpoint the idea that the ABA is the major limiting factor for
early seedling growth in osltpl23mutants. Meanwhile, we also checked
the transcription levels of defence-related marker genes OsPR1a,
OsPR1b, OsWRKY45 and OsPAD4 in all plants. All these biotic
stress-responsive genes in the osltpl23 lines exhibited lower gene
expression level compared with those in NIP (Figure 7D). All these
results indicated that OsLTPL23 may positively regulate the rice early
seedling growth.

Discussion

The molecular dictation from a lower ABA/GA ratio in seeds
determines the stage transition from dormancy to germination
(Jacobsen et al., 2002; Piskurewicz et al., 2008; Shu et al., 2016;
Yang et al., 2020). Sucrose is a rapidly consumed agent for
growing embryonic axis in germinated seeds, which products,
soluble sugar, is another factor influencing the germination
process (Dekkers et al., 2004; Gibson, 2005; Zhu et al., 2009;
Li et al., 2017; Matsukura et al., 2020). The effect and interplay
between ABA and soluble sugar had been wildly investigated in
the germinated seed (Dekkers et al., 2004; Zhu et al., 2009; Shu
et al., 2013; Wang et al., 2021; Xue et al., 2021). In this present
study, we provided evidences to depict the roles of lipid transfer
protein OsLTPL23 in endogenous carbohydrates phase
transition and seed germination. The abnormal starch-to-
sugar conversion of the dry seed may lead to the delayed
germination initiation in osltpl23 mutants, and endogenous
ABA homeostasis is involved in OsLTPL23-controlled seed
germination vigor. These results offered a new viewpoint
regarding how nsLTPs act in the metabolism of carbohydrates
and ABA during seed germination.

Plant nsLTPs are a class of small, secreted proteins, which
localize in the cell wall (Thoma et al., 1993), plasma membrane (Li
et al., 2020; Zhao et al., 2020; Chen et al., 2022), cytoplasm (Fujino
et al., 2008; Li et al., 2020) and nucleus (Fujino et al., 2008).
Accumulated evidences have shown that nsLTPs play important
roles in wax assembly (Hollenbach et al., 1997), cell wall extension
(Nieuwland et al., 2005), anther and pollen development (Chae
et al., 2009; Zhang et al., 2010), seed development and quality
(Wang et al., 2015) and plant-pathogen interaction (Segura et al.,
1993; Molina and Garcia-Olmedo, 1997; Park et al., 2002; Gomes
et al., 2003; Sarowar et al., 2009; Ahmed et al., 2017). Here, we
identified a plasma membrane and nucleus colocalized nsLTP,
OsLTPL23, which is distinct from starch-independent OsLTPL36
and ABA-dependent OsTPP1 in seed germination (Wang et al.,
2015; Wang et al., 2021). We speculated that the putative alpha-
amylase inhibitor activity and nucleus enrichment together issue in
the phenotype of osltpl23 mutants, especially the nucleus
localization representing the manipuility of ABA-related gene
expression.

The stored starch in the endosperm is the major energy
source during seed germination and seedling establishment,
while the inhibitory effect on seed germination and post-
germination seedling growth is largely dependent on the
increase of ABA concentration (Damaris et al., 2019; Chen
et al., 2020). In imbibed seed, the glucose, one hydrolysate of
starch, treatment delays the germination process by alleviating
endogenous ABA degradation, exogenous ABA, in turn,
controls endogenous glucose partition to inhibit germination
(Dekkers et al., 2004; Zhu et al., 2009; Xue et al., 2021). Initially,
OsLTPL23 was identified as candidate positive regulator
responsible for seed germination, with induced transcription
in embryo and endosperm. Paradoxically, our carbohydrates
determination result suggested that OsLTPL23 has alpha-
amylase inhibitor activity in dry seeds, which must destroy
the energy source of seed germination, seedling establishment
and seedling growth through restraining starch-to-sugars
conversion. There are two possible explanation for this
discordance. One is that the microarray-based gene
expression cannot reflect the natural transcription state of
OsLTPL23. The other is that OsLTPL23 may not an key
contributor in seed germination and post-germination
seedling development. Here, we preferred the former, because
osltpl23 mutants shows increased soluble sugar concentration in
the dry seeds and the transcription feature of elevated ABA
content in germinated seeds and early seedling growth. In the
future, the molecular mechanism of endogenous ABA and
soluble sugar interaction on seed germination should be
emphasized. Overall, osltpl23 mutants provide an important
resource to survey the seed germination, post-germination
growth and seed development, as well as high vigor seed
production in rice.
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SUPPLEMENTARY FIGURE S1
Nucleotide sequences at the target site in eight heterozygous mutants.
The recovered mutated alleles are shown below the NIP sequence. The
target site nucleotides are indicated with black capital letters. The
PAM site is underlined. The red dashes indicate deleted nucleotides. The
red capital letters indicate inserted nucleotides.

SUPPLEMENTARY FIGURE S2
OsLTPL23 expression detection in osltpl23 mutants. Each column presents the
means±standard deviations of three biological replicates. Values are the
mean±standard deviations of three biological replicates. Significance were
generated by Student’s t-test with *p < .05 and **p < .01
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