3,238 research outputs found

    MVPNet: Multi-View Point Regression Networks for 3D Object Reconstruction from A Single Image

    Full text link
    In this paper, we address the problem of reconstructing an object's surface from a single image using generative networks. First, we represent a 3D surface with an aggregation of dense point clouds from multiple views. Each point cloud is embedded in a regular 2D grid aligned on an image plane of a viewpoint, making the point cloud convolution-favored and ordered so as to fit into deep network architectures. The point clouds can be easily triangulated by exploiting connectivities of the 2D grids to form mesh-based surfaces. Second, we propose an encoder-decoder network that generates such kind of multiple view-dependent point clouds from a single image by regressing their 3D coordinates and visibilities. We also introduce a novel geometric loss that is able to interpret discrepancy over 3D surfaces as opposed to 2D projective planes, resorting to the surface discretization on the constructed meshes. We demonstrate that the multi-view point regression network outperforms state-of-the-art methods with a significant improvement on challenging datasets.Comment: 8 pages; accepted by AAAI 201

    RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement

    Get PDF
    Extreme learning machine (ELM) as an emerging branch of shallow networks has shown its excellent generalization and fast learning speed. However, for blended data, the robustness of ELM is weak because its weights and biases of hidden nodes are set randomly. Moreover, the noisy data exert a negative effect. To solve this problem, a new framework called RMSE-ELM is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different groups concurrently, then employs selective ensemble to pick out an optimal set of ELMs in each group, which can be merged into a large group of ELMs called candidate pool. In the second layer, selective ensemble is recursively used on candidate pool to acquire the final ensemble. In the experiments, we apply UCI blended datasets to confirm the robustness of our new approach in two key aspects (mean square error and standard deviation). The space complexity of our method is increased to some degree, but the results have shown that RMSE-ELM significantly improves robustness with slightly computational time compared with representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework to solve robustness issue of ELM for high-dimensional blended data in the future.Comment: Accepted for publication in Mathematical Problems in Engineering, 09/22/201

    KBNN Based on Coarse Mesh to Optimize the EBG Structures

    Get PDF
    The microwave devices are usually optimized by combining the precise model with global optimization algorithm. However, this method is time-consuming. In order to optimize the microwave devices rapidly, the knowledge-based neural network (KBNN) is used in this paper. Usually, the a priori knowledge of KBNN is obtained by the empirical formulas. Unfortunately, it is difficult to derive the corresponding formulas for the most electromagnetic problems, especially for complex electromagnetic problems; the formula derivation is almost impossible. We use precise mesh model of EM analysis as teaching signal and coarse mesh model as a priori knowledge to train the neural network (NN) by particle swarm optimization (PSO). The NN constructed by this method is simpler than traditional NN in structure which can replace precise model in optimization and reduce the computing time. The results of electromagnetic band-gap (EBG) structures optimally designed by this kind of KBNN achieve increase in the bandwidth and attenuation of the stopband and small passband ripple level which shows the advantages of the proposed KBNN method

    Idea and Theory of Particle Access

    Full text link
    Aiming at some problems existing in the current quality of service (QoS) mechanism of large-scale networks (i.e. poor scalability, coarse granularity for provided service levels, poor fairness between different service levels, and improving delay performance at the expense of sacrificing some resource utilization), the paper puts forward the idea and thoery of particle access. In the proposed particle access mechanism, the network first granulates the information flow (that is, the information flow is subdivided into information particles, each of which is given its corresponding attributes), and allocates access resources to the information particle group which is composed of all the information particles to be transmitted, so as to ensure that the occupied bandwidth resources is minimized on the premise of meeting the delay requirements of each information particle. Moreover, in the paper, the concepts of both information particle and information particle group are defined; Basic properties of the minimum reachable access bandwidth of an information particle group are analyzed; The influences of time attribute and attribute of bearing capacity of an information particle group on the minimum reachable access bandwidth are analyzed; Finally, an effective method for the calculation of the minimum reachable access bandwidth of an information particle group is given, and a particle access algorithm based on dynamically adjusting the minimum reachable access bandwidth is proposed. The research of the paper pave a new way for further improving QoS mechanisms of large-scale networks, and lay the corresponding theoretical foundation

    Instruct-NeuralTalker: Editing Audio-Driven Talking Radiance Fields with Instructions

    Full text link
    Recent neural talking radiance field methods have shown great success in photorealistic audio-driven talking face synthesis. In this paper, we propose a novel interactive framework that utilizes human instructions to edit such implicit neural representations to achieve real-time personalized talking face generation. Given a short speech video, we first build an efficient talking radiance field, and then apply the latest conditional diffusion model for image editing based on the given instructions and guiding implicit representation optimization towards the editing target. To ensure audio-lip synchronization during the editing process, we propose an iterative dataset updating strategy and utilize a lip-edge loss to constrain changes in the lip region. We also introduce a lightweight refinement network for complementing image details and achieving controllable detail generation in the final rendered image. Our method also enables real-time rendering at up to 30FPS on consumer hardware. Multiple metrics and user verification show that our approach provides a significant improvement in rendering quality compared to state-of-the-art methods.Comment: 11 pages, 8 figure
    • …
    corecore