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The microwave devices are usually optimized by combining the precise model with global optimization algorithm. However, this
method is time-consuming. In order to optimize the microwave devices rapidly, the knowledge-based neural network (KBNN) is
used in this paper. Usually, the a priori knowledge of KBNN is obtained by the empirical formulas. Unfortunately, it is difficult to
derive the corresponding formulas for the most electromagnetic problems, especially for complex electromagnetic problems; the
formula derivation is almost impossible. We use precise mesh model of EM analysis as teaching signal and coarse mesh model as
a priori knowledge to train the neural network (NN) by particle swarm optimization (PSO). The NN constructed by this method
is simpler than traditional NN in structure which can replace precise model in optimization and reduce the computing time. The
results of electromagnetic band-gap (EBG) structures optimally designed by this kind of KBNN achieve increase in the bandwidth
and attenuation of the stopband and small passband ripple level which shows the advantages of the proposed KBNNmethod.

1. Introduction

The electromagnetic band-gap (EBG) [1, 2] is a kind of
artificial periodic structure that prohibits the propagation
of electromagnetic waves in certain frequency bands at
microwave frequencies. Because of the unique feature of
EBG structures, they have been applied tomicrowave circuits
such as filters [3], power amplifiers [4], and antennas [5] to
improve their performance.

Recently, neural network (NN) is widely used in
microwave modeling and design [6–8] for its good learning
ability and generalization. Usually, NN suffers a large number
of samples to ensure the accuracy, which greatly increases
the workload to establish NN. In existing papers, one of
the effective ways to solve this problem is knowledge-based
neural network (KBNN) [9]. The a priori knowledge of
KBNN is always the empirical formula which contains the
basic information about the microwave circuits but cannot
achieve the required precision. There are different kinds of
the knowledge-based structures, such as difference method
[10], the a priori knowledge input (PKI) method [11], and
KBNN [12]. In the existing methods, the a priori knowledge
is obtained by empirical formula or NN [13, 14]. If empirical

formula is considered as a priori knowledge, the cost of
calculation can be negligible, but not all microwave devices
have equivalent circuit; if the a priori knowledge is obtained
by NN, the training of NN requires a large number of
samples: both of them are flawed. In this paper, the a priori
knowledge is obtained by coarse mesh model and is used
as knowledge neurons in the hidden layers of NN. The
advantage of this approach is that it can be widely applied
to quick electromagnetic optimization even for the complex
microwave devices. The method to build the KBNN model
is given in the second section, including the neural network
structure, acquisition of samples, and training method. In
the third section, the KBNN is applied to tapered dual-plane
EBG and papilionaceous dual-plane EBG which shows the
feasibility of the method. Summary and discussion of future
work are given in Section 4.

2. The Proposed KBNN

Assume that the structure of KBNN is 𝑛 × 𝑚 × 1, shown
in Figure 1. Let 𝑥 represent input vector containing physical
parameters of a microwave device, and let 𝑦 represent
output vector of the KBNN.The number of knowledge-based
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Figure 1: Structure of the proposed KBNN.

neurons in the hidden layer is 𝑝; ℎ𝑘 represent vector of the
knowledge-based neurons values. The number of traditional
hidden neurons is 𝑞(𝑝 + 𝑞 = 𝑚); ℎ represent output vector of
traditional hidden neurons. Because no empirical formula is
used here, there is no connection between input neurons and
knowledge-based neurons. In short, the network combines
the features of DC model and KBNN model; a part of the
hidden neurons is used to generate the a priori knowledge
and the other part is same as the traditional hidden neurons
which are used to generate the difference between the coarse
and fine models.

Given input 𝑥, the output can be computed by

𝑦 =
𝑝

∑
𝑗=1

𝜔𝑗ℎ𝑘𝑗 +
𝑞

∑
𝑘=1

𝜔𝑘ℎ𝑘 + 𝜃, (1)

where 𝜔𝑗 is the weight between knowledge-based neurons
and output layer, 𝜔𝑘 is the weight between traditional hidden
neurons and output layer, and 𝜃 is threshold. ℎ𝑘 can be
computed by

ℎ𝑘 = 𝑔 (𝛾𝑘) ,

𝛾𝑘 =
𝑛

∑
𝑖=1

𝜔𝑖𝑘𝑥𝑖 + 𝜃𝑘,
(2)

where 𝜔𝑖𝑘 is the weight between input layer and traditional
hidden neurons; 𝑔(⋅) is an activation function; we choose the
sigmoid function (the function’s gain 𝜆 = 1) here.

𝑔 (𝛾) = 1
1 + 𝑒−𝛾 . (3)

In the simulation examples, both substrates have low loss.
So we can approximatively consider the relationship between
|𝑆21| and |𝑆11| as follows:

󵄨󵄨󵄨󵄨𝑆11󵄨󵄨󵄨󵄨
2 + 󵄨󵄨󵄨󵄨𝑆21󵄨󵄨󵄨󵄨

2 = 1. (4)

Table 1: Orthogonal table with 6 factors and 5 levels.

Number A B C D E F
1 1 1 1 4 1 1
2 1 2 2 3 5 4
3 1 3 3 2 4 2
4 1 4 5 5 3 3
5 1 5 4 1 2 5
6 2 1 2 5 4 5
7 2 2 3 1 3 1
8 2 3 5 4 2 4
9 2 4 4 3 1 2
10 2 5 1 2 5 3
11 3 1 3 3 2 3
12 3 2 5 2 1 5
13 3 3 4 5 5 1
14 3 4 1 1 4 4
15 3 5 2 4 3 2
16 4 1 5 1 5 2
17 4 2 4 4 4 3
18 4 3 1 3 3 5
19 4 4 2 2 2 1
20 4 5 3 5 1 4
21 5 1 4 2 3 4
22 5 2 1 5 2 2
23 5 3 2 1 1 3
24 5 4 3 4 5 5
25 5 5 5 3 4 1

Because of this relationship, the number of knowledge-based
neurons in hidden layer can be set from 0 to 2. When the
number is 0, it means there is no knowledge-based neuron.
|𝑆21| is used as knowledge-based neuron when the number is
1; while it becomes two, both |𝑆11| and |𝑆21| are used.

The design parameters are generated by partial orthog-
onal experimental design to reduce the number of training
samples. Orthogonal experiment design is a kind of design
method to study multifactors and multilevels. It is based on
orthogonality to select some representative points which is
uniformly dispersed from the comprehensive experiment.
In this paper, 6-factor and 5-level orthogonal table is used,
shown in Table 1. In the table, A∼F represent 6 design
parameters and 1∼5 represent the levels of parameters. There
are 25 groups of design parameters. If the training samples are
too few, the KBNN cannot accurately map the relationship
between input and output.

When the design parameters are confirmed, the output of
KBNN is obtained by HFSS. Generally, the accuracy of HFSS
simulation depends on adaptive analysis parameters, which
are maximum number of passes and maximum delta S. The
maximumnumber of passes value is themaximumnumber of
mesh refinement cycles that you would like HFSS to perform.
And delta S is the magnitude of the change of S-parameters
between two consecutive passes. They are stopping criterion
for the adaptive solution. Usually, the maximum number
of passes is 6 and maximum delta S is 0.02 which can get
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accurate results. In the paper, delta S is 0.3 in this case;
that is, the maximum number of passes is 1 or 2 for coarse
mesh model. When delta S is about 0.02, the maximum
number of passes is 6, which can be considered as fine mesh
model. So we can find that if the mesh is not coarse enough,
the simulation results will be closer to the accurate results.
However, its analysis time will be much longer. So we just
consider that themaximum number of passes of model is 1 or
2 which is suitable for a priori knowledge. VBScript is used
here to provide an interface between HFSS and MATLAB.
Thus, the data exchange can be realized which makes the
acquisition of samples more automated and concise.

Particle swarm optimization (PSO), which is a kind
of global optimization method [15], is chosen to train the
network which can effectively avoid the local optimum of the
NN. A flowchart of the proposed KBNN is shown in Figure 2.
The number of particles is 80 with 1000 iterations for training
the KBNN. We can judge the accuracy of the network by
calculating the mean absolute error (MAE) of the sample and
network correlation coefficient (NCC):

MAE = ∑𝑃𝑖=1 󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑠𝑖󵄨󵄨󵄨󵄨
𝑃 ,

NCC = ∑ (𝑠𝑖 − 𝑠) (𝑦𝑖 − 𝑦)
√∑ (𝑠𝑖 − 𝑠)2 (𝑦𝑖 − 𝑦)2

,
(5)

where 𝑠 represents the corresponding result of HFSS simula-
tion, 𝑃 is the total number of data samples, 𝑠 is mean of the
desired outputs, and 𝑦 is mean of network outputs. NCC is an
important standard tomeasure the rationality of the network.
If it is closer to 1, the network is more reasonable. Otherwise,
the network needs to be trained again. According to Figure 2,
we can establish the KBNN and use the KBNN to optimize
microwave devices. A flowchart of the optimization by PSO
is shown in Figure 3.The criterion of terminating the PSO for
training KBNN and optimization is same.When the iteration
reaches the maximum or the fitness meets the required error,
the PSO can be terminated.

3. Simulation Examples of EBG Structures

3.1. Tapered Dual-Plane EBG Structure. Theproposed KBNN
is applied to a tapered dual-plane EBG [16], illustrated in
Figure 4. As can be seen in Figure 4, the tapered dual-plane
EBG consists of two single-plane EBG structures, one of
which is a modulated microstrip line, while the other is a
ground plane with etched circles. Between these two planes,
there is a substrate with thickness 𝐻 = 0.762mm, relative
dielectric constant 𝜀𝑟 = 2.43, and loss tangent tan𝐷 = 0.0015.
The distance between the centers of two adjacent circles is
𝑎1 = 10.35mm; the radius of the circle from the middle to
the side is 𝑟1, 𝑟2, and 𝑟3. The distance between the centers
of two adjacent squares is 𝑎2 = 10.35mm; the length of the
square from the middle to the side is 𝑙1, 𝑙2, and 𝑙3. Before
optimization, 𝑟1 = 𝑟2 = 𝑟3 = 2mm and 𝑙1 = 𝑙2 = 𝑙3 = 4mm.
The frequency range is 1.7 GHz∼4.3GHz with 56 sampled
points.
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Figure 2: Flowchart of the proposed KBNN.

The simulated 𝑆21 parameters of the tapered dual-plane
EBG before optimization are shown in Figure 5. As can be
seen in Figure 5, the tapered dual-plane EBG shows a −10 dB
bandwidth of 4.9029GHz with attenuation of 33.5691 dB at
9.6GHz. The ripple level is 1.8247 dB in the lower passband
and 6.3265 dB in the higher passband. To achieve maximum
band-gap, the tapered dual-plane EBG is optimized by
proposed KBNN.

First, we need to obtain the training samples to train the
KBNN.The design parameter is k = [𝑙1 𝑙2 𝑙3 𝑟1 𝑟2 𝑟3].
The ranges of them are as follows: 𝑙1 ∈ [4, 5], 𝑙2 ∈ [3.5, 4.5],
𝑙3 ∈ [3, 4], 𝑟1 ∈ [2, 3], 𝑟2, 𝑟3 ∈ [1.5, 2.5]. The input of the
proposed KBNN is x = [k 𝑓]𝑇. As it is said above, we
sample 25 groups of 𝑥𝑚 by partial orthogonal experimental
design. Hence, there are totally 25 × 56 = 1400 training
samples.

To some degree, the reliability of proposed KBNN
depends on the number of hidden neurons and knowledge-
based neurons. So we train the same test sample in different
number of hidden neurons and knowledge-based neurons;
the results are listed in Table 2.

In Table 2, 2K4H represents the fact that the number of
hidden neurons is 4, in which the number of knowledge-
based neurons is 2, and 1K5H represents the fact that the
number of hidden neurons is 6, in which the number of
knowledge-based neurons is 1, and so on. It can be seen from
Table 2 that when the number of knowledge-based neurons
is 2, the number of hidden neurons has little influence on the
results. When the number of knowledge-based neurons is 1,
NCC decreases from 0.9944 to 0.9933, and MAE increases
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Figure 3: Flowchart of design optimization.
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Figure 4: Structure of tapered dual-plane EBG.

from 0.8040 to 1.1050. When there is no knowledge-based
neuron in hidden layer, the NN can be regarded as a PSO-
NN. NCC drops to 0.9268 and MAE increases to 1.6115;
the NN cannot map the relationship between input and
output accurately. As a result, the existence of knowledge-
based neurons can significantly improve the reliability of the
network and make it easy to get the precise output.

We generate 5 different groups of test samples randomly
and test on the 2K5H KBNN; the test results are shown
in Table 3 and Figure 6. The KBNN is trained by PSO
with 1000 iterations, while the 10-hidden-neuron multilayer

perceptron (MLP) is trained with same training samples and
1500 iterations. As can be seen in Figure 6, the MAE of
proposedKBNN is 0.8040 and theMAEof 10-hidden-neuron
MLP is 1.6733. Compared with MLP, the result of proposed
KBNN is closer to theHFSS. In a short, in case of ensuring the
accuracy, the proposed KBNN needs less number of training
samples and has good generalization ability.

Use the trained KBNN with 2K5H structure to optimize
the tapered dual-plane EBG. In the process of optimization,
the precise model is replaced with KBNN which can reduce
the time of optimization.The PSO algorithm to optimize has
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Figure 5: Simulated 𝑆21 parameter of tapered dual-plane EBG.
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Figure 6: Test sample result of tapered dual-plane EBG.

Table 2: Error in different hidden and knowledge neurons of
tapered dual-plane EBG.

Type of NN MAE NCC
2K4H 1.0489 0.9936
2K5H 0.8040 0.9944
2K6H 0.9343 0.9943
2K7H 0.7311 0.9938
2K8H 0.8147 0.9944
2K9H 0.7781 0.9941
2K10H 0.9561 0.9942
1K5H 1.1050 0.9933
0K5H 1.6115 0.9268

Table 3: Error of different test samples of tapered dual-plane EBG.

Number 1 2 3 4 5
MAE 0.8040 0.7810 0.8783 0.8193 0.6801
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Figure 7: Fitness curve of optimization.

20 particles with 80 iterations. The output of KBNN is used
to calculate the fitness. The fitness function is calculated by

Fit = min (5 × 𝑦1 + 𝑦2) ,
𝑦1 = 󵄨󵄨󵄨󵄨min (𝑦 (𝑓𝑖))󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2, . . . , 10, 50, 51, . . . , 56,
𝑦2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨min (𝑦 (𝑓𝑖))󵄨󵄨󵄨󵄨 − 45󵄨󵄨󵄨󵄨 , 𝑖 = 20, 21, . . . , 38,

(6)

where𝑓𝑖 (𝑖 = 1, 2, . . . , 56) is every point of frequency; 𝑦(𝑓𝑖) is
the output of KBNN in corresponding frequency. Finally, we
get the optimized sizes:

k

= [4.5929 3.9537 3.4882 2.6080 2.2631 1.8897] .
(7)

The fitness curve is shown in Figure 7 and the results of
optimization are shown in Table 4 and Figure 8.

It can be seen from optimization results that, after
optimization, the maximum attenuation is from 33.5691 to
38.8096 dB. The 10 dB bandwidth is 1.19 times wider than
that before optimization. The ripple level is lowered from
1.8247 to 0.6878 dB in the lower passband and from 6.3265
to 4.0484 dB in the higher passband. This proves that it is
effective to use the proposed KBNN as precise model to
optimize the tapered dual-plane EBG.

The average analysis time of coarse mesh model is about
35 s, while the time of precise model is about 69 s. When
both coarse mesh model and precise model are analyzed,
the time is about 86 s. In the condition of 20 particles with
80 iterations, we can roughly calculate the total time of
optimization by precise model in 69×80×20 = 110400 s.The
training process includes obtaining 25 sets training samples
and training the KBNN. So the time of training process is
calculated by 86 × 25 + 696 = 2846 s, and the total time
of optimization by KBNN is 58846 s. As can be seen from
Table 5, although the proposed KBNN takes short time to
obtain the training samples and train the KBNN, the total
time of optimization by KBNN is almost half of the time of
optimization by precise model. As a result, using the KBNN
based on coarse mesh to optimize the tapered dual-plane
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Table 4: Data of tapered dual-plane EBG before and after optimization.

−10 dB relative
bandwidth

Maximum
attenuation/dB

Ripple level in the
lower passband/dB

Ripple level in the
higher passband/dB

Before optimization 51.07% 33.5691 1.8247 6.3265
After optimization 60.88% 38.8096 0.6878 4.0484

Table 5: Time of optimization by precise model and proposed KBNN comparison.

Optimized by precise model Optimized by proposed KBNN
Training process 0 86 × 25 + 696 = 2846
Optimization 69 × 80 × 20 = 110400 35 × 80 × 20 = 56000
Total 110400 = 30.67 h 58846 = 16.35 h

Result of HFSS simulation before optimization
Output of proposed KBNN after optimization
Result of HFSS simulation after optimization
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Figure 8: Comparison of tapered dual-plane EBG before and after
optimization.

EBG, to a great degree, shortens the time of optimization and
makes it efficient.

3.2. Papilionaceous Dual-Plane EBG Structure. The proposed
KBNN is applied to a papilionaceous dual-plane EBG [17],
illustrated in Figure 9. As can be seen from Figure 9, the
papilionaceous dual-plane EBG also consists of two single-
plane EBG structures, one of which is six cells of papiliona-
ceous patches, while the other is a ground plane with six
etched rings. Between these two planes, there is a substrate
with thickness 𝐻 = 1.2mm, relative dielectric constant 𝜀𝑟 =
3.38, and loss tangent tan𝐷 = 0.0027. The distance between
the centers of two cells papilionaceous patches is 𝑎1 =
17.6mm.The length of papilionaceous patch is 𝑎2 = 17.6mm.
The widths of papilionaceous patch are, respectively, 𝑤1 =
2.768mm and 𝑤2 = 0.2mm. Before optimization, the inner
and outer radii 𝑟 = 𝑅/2 = 1.1mm. The frequency range is
3GHz∼7.5 GHz with 46 sampled points.

The simulated 𝑆21 parameters of the papilionaceous dual-
plane EBGbefore optimization are shown in Figure 10. As can
be seen from Figure 10, the papilionaceous dual-plane EBG
shows a −10 dB bandwidth of 2.4553GHz with attenuation of

Table 6: Error in different hidden and knowledge neurons of
papilionaceous dual-plane EBG.

Type of NN MAE NCC
2K4H 1.1121 0.9867
2K5H 0.9777 0.9879
2K6H 0.9549 0.9864
2K7H 0.9398 0.9880
2K8H 0.9195 0.9869
2K9H 0.8991 0.9881
2K10H 0.9857 0.9882
1K7H 1.0683 0.9870
0K7H 9.2719 0.7471

32.5114 dB at 5.2GHz.The ripple level is 3.648 dB in the lower
passband and 5.3396 dB in the higher passband.

The design parameter of papilionaceous dual-plane EBG
is k = [𝑅1 𝑅2 𝑅3 𝑟1 𝑟2 𝑟3]. The subscript numbers are
set from center to side. The relationship of them is 𝑅1 =
2𝑟1, 𝑅2 = 2𝑟2, and 𝑅3 = 2𝑟3, The ranges of them are as
follows:𝑅1, 𝑅2, 𝑅3 ∈ [1.5, 4]The input of the proposedKBNN
is x = [k 𝑓]𝑇. k has 25 groups. Hence, there are totally
25 × 46 = 1150 training samples.

The results on same test sample of different number of
hidden neurons and knowledge-based neurons are listed in
Table 6.

From the table, we know that when the number of
knowledge-basedneurons is 2, the number of hiddenneurons
has little influence on the results. When the number of
knowledge-based neurons is 1, NCC decreases from 0.9880
to 0.9870, and MAE increases from 0.9398 to 1.0683. When
there is no knowledge-based neuron in hidden layer, theNCC
drops to 0.7471 and MAE increases to 9.2719. We can draw
same conclusions that the proposed KBNN makes the NN
structure simpler and has easy access to accuracy value.

The test results on 5 different test samples of 2K7HKBNN
are shown in Table 7 and Figure 10. As can be seen from
Figure 11, the MAE of the proposed KBNN is 0.9398 and the
MAEof 10-hidden-neuronMLP is 1.2488. Similarly, the result
of the proposed KBNN is closer to the HFSS compared with
theMLPNN.Themodeling of the papilionaceous dual-plane
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Figure 9: Structure of papilionaceous dual-plane EBG.
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Figure 10: Simulated 𝑆21 parameter of papilionaceous dual-plane EBG.

Table 7: Error of different test samples of papilionaceous dual-plane
EBG.

Number 1 2 3 4 5
MAE 0.9398 0.8664 0.8757 1.0314 0.9369

EBG shows same conclusion with tapered dual-plane EBG
which verifies superiority of the proposed KBNN.

Same with the optimization of tapered dual-plane EBG,
the papilionaceous dual-plane EBG is optimized by exploit-
ing the trained KBNN with 2K7H structure. The fitness
function is calculated by

Fit = min (10 × 𝑦1 + 𝑦2) ,
𝑦1 = 󵄨󵄨󵄨󵄨min (𝑦 (𝑓𝑖))󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2, . . . , 6, 41, 42, . . . , 46,
𝑦2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨min (𝑦 (𝑓𝑖))󵄨󵄨󵄨󵄨 − 40󵄨󵄨󵄨󵄨 , 𝑖 = 7, 8, . . . , 40.

(8)

The optimized size is k =
[3.6590 3.0423 2.0134 1.8295 1.5211 1.0067].
The fitness curve is shown in Figure 12 and the results of
optimization are shown in Figure 13 and Table 8.

It can be seen from the optimization results that, after
optimization, the maximum attenuation is from 32.5144 to

39.7025 dB. The 10 dB bandwidth is 1.268 times wider than
that before optimization. The ripple level is significantly
lowered from 3.6480 to 1.6889 dB in the lower passband and
from 5.3396 to 2.0679 dB in the higher passband. In this
example, the proposed KBNN is also proven to be a good way
to optimize the papilionaceous dual-plane EBG.

The average analysis time of coarse mesh model is about
23.8 s, while the time of precise model is about 38.5 s. When
both coarse mesh model and precise model are analyzed, the
time is about 58 s. Similarly, we can calculate the total time
of optimization by two ways, shown in Table 9. As can be
seen from Table 9, using the KBNN based on coarse mesh
to optimize the papilionaceous dual-plane EBG also shortens
the time of optimization and makes it easy to optimize.

4. Conclusion

In this paper, we propose a new way to obtain the a priori
knowledge by coarse mesh model which avoids complicated
derivation of the formulas or the cost of obtaining a large
number of samples. This method is also applied to those
microwave devices which do not have empirical formulas.
The modeling results of tapered dual-plane EBG and papil-
ionaceous dual-plane EBG show that the knowledge-based
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Table 8: Data of papilionaceous dual-plane EBG before and after optimization.

−10 dB relative
bandwidth

Maximum
attenuation/dB

Ripple level in the
lower passband/dB

Ripple level in the
higher passband/dB

Before optimization 47.22% 32.5144 3.6480 5.3396
After optimization 59.87% 39.7025 1.6889 2.0679

Table 9: Time of optimization by precise model and proposed KBNN comparison.

Optimized by precise model Optimized by proposed KBNN
Training process 0 58 × 25 + 556 = 2006
Optimization 38.5 × 80 × 20 = 61600 23.8 × 80 × 20 = 38080
Total 61600 = 17.11 h 40086 = 11.135 h
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Figure 11: Test sample result of papilionaceous dual-plane EBG.
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Figure 12: Fitness curve of optimization.

neurons in the hidden layer can significantly reduce the num-
ber of hidden neurons which makes the structure simpler
and the test results are in good accordance with the results
of HFSS simulation which shows the strong generalization
ability of the proposed KBNN. The optimizations of above
examples indicate that using the proposed KBNN to optimize
the microwave devices is feasible which can obviously reduce

Result of HFSS simulation before optimization
Output of proposed KBNN after optimization
Result of HFSS simulation after optimization
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Figure 13: Comparison of papilionaceous dual-plane EBG before
and after optimization.

the optimization time. In other words, the proposed KBNN
has good value in the optimization ofmicrowave devices.The
otherway to obtain the a priori knowledgewill be investigated
in the future work and the new structure of KBNN will also
be considered.
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