2,679 research outputs found

    Dipolar origin of the gas-liquid coexistence of the hard-core 1:1 electrolyte model

    Get PDF
    We present a systematic study of the effect of the ion pairing on the gas-liquid phase transition of hard-core 1:1 electrolyte models. We study a class of dipolar dimer models that depend on a parameter R_c, the maximum separation between the ions that compose the dimer. This parameter can vary from sigma_{+/-} that corresponds to the tightly tethered dipolar dimer model, to R_c --> infinity, that corresponds to the Stillinger-Lovett description of the free ion system. The coexistence curve and critical point parameters are obtained as a function of R_c by grand canonical Monte Carlo techniques. Our results show that this dependence is smooth but non-monotonic and converges asymptotically towards the free ion case for relatively small values of R_c. This fact allows us to describe the gas-liquid transition in the free ion model as a transition between two dimerized fluid phases. The role of the unpaired ions can be considered as a perturbation of this picture.Comment: 16 pages, 13 figures, submitted to Physical Review

    Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles

    Get PDF
    The emergence of omics approaches in environmental research has enhanced our understanding of the mechanisms underlying toxicity; however, extrapolation from molecular effects to whole-organism and population level outcomes remains a considerable challenge. Using environmentally relevant, sublethal, concentrations of two metals (Cu and Ni), both singly and in binary mixtures, we integrated data from traditional chronic, partial life-cycle toxicity testing and metabolomics to generate a statistical model that was predictive of reproductive impairment in a Daphnia pulex-pulicaria hybrid that was isolated from an historically metal-stressed lake. Furthermore, we determined that the metabolic profiles of organisms exposed in a separate acute assay were also predictive of impaired reproduction following metal exposure. Thus we were able to directly associate molecular profiles to a key population response - reproduction, a key step towards improving environmental risk assessment and management

    Criticality in confined ionic fluids

    Full text link
    A theory of a confined two dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r1/r potential, are constrained to move on an interface separating two solvents with dielectric constants ϵ1\epsilon_1 and ϵ2\epsilon_2. It is shown that the Debye-H\"uckel type of theory predicts that the this 2d Coulomb fluid should undergo a phase separation into a coexisting liquid (high density) and gas (low density) phases. We argue, however, that the formation of polymer-like chains of alternating positive and negative ions can prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.

    Metal Surface Energy: Persistent Cancellation of Short-Range Correlation Effects beyond the Random-Phase Approximation

    Get PDF
    The role that non-local short-range correlation plays at metal surfaces is investigated by analyzing the correlation surface energy into contributions from dynamical density fluctuations of various two-dimensional wave vectors. Although short-range correlation is known to yield considerable correction to the ground-state energy of both uniform and non-uniform systems, short-range correlation effects on intermediate and short-wavelength contributions to the surface formation energy are found to compensate one another. As a result, our calculated surface energies, which are based on a non-local exchange-correlation kernel that provides accurate total energies of a uniform electron gas, are found to be very close to those obtained in the random-phase approximation and support the conclusion that the error introduced by the local-density approximation is small.Comment: 5 pages, 1 figure, to appear in Phys. Rev.

    Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states

    Full text link
    The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the prefactor of exponent is obtained in terms of periodic instantons which are responsible for tunneling at excited states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and medium axes. Using complex time path-integral we demonstrate the oscillation of tunnel splitting with respect to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings . The oscillation is gradually smeared and in the end the tunnel splitting monotonously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the medium axis. The oscillation behavior is similar to the recent experimental observation with Fe8_8 molecular clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the ferrimagnetic particles is proposed.Comment: 15 pages, 5 figures, acceptted to be pubblished in Physical Review

    Magnetotransport Mechanisms in Strongly Underdoped YBa_2Cu_3O_x Single Crystals

    Full text link
    We report magnetoresistivity measurements on strongly underdoped YBa_2Cu_3O_x (x=6.25, 6.36) single crystals in applied magnetic fields H || c-axis. We identify two different contributions to both in-plane and out-of-plane magnetoresistivities. The first contribution has the same sign as the temperature coefficient of the resistivity \partial ln(\rho_i)/\partial T (i={c,ab}). This contribution reflects the incoherent nature of the out-of-plane transport. The second contribution is positive, quadratic in field, with an onset temperature that correlates to the antiferromagnetic ordering.Comment: 4 pages, 3 figure

    Growth model with restricted surface relaxation

    Full text link
    We simulate a growth model with restricted surface relaxation process in d=1 and d=2, where d is the dimensionality of a flat substrate. In this model, each particle can relax on the surface to a local minimum, as the Edwards-Wilkinson linear model, but only within a distance s. If the local minimum is out from this distance, the particle evaporates through a refuse mechanism similar to the Kim-Kosterlitz nonlinear model. In d=1, the growth exponent beta, measured from the temporal behavior of roughness, indicates that in the coarse-grained limit, the linear term of the Kardar-Parisi-Zhang equation dominates in short times (low-roughness) and, in asymptotic times, the nonlinear term prevails. The crossover between linear and nonlinear behaviors occurs in a characteristic time t_c which only depends on the magnitude of the parameter s, related to the nonlinear term. In d=2, we find indications of a similar crossover, that is, logarithmic temporal behavior of roughness in short times and power law behavior in asymptotic times

    The CXCR4/CXCR7/CXCL12 Axis Is Involved in a Secondary but Complex Control of Neuroblastoma Metastatic Cell Homing.

    Get PDF
    Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets

    Mappings of least Dirichlet energy and their Hopf differentials

    Full text link
    The paper is concerned with mappings between planar domains having least Dirichlet energy. The existence and uniqueness (up to a conformal change of variables in the domain) of the energy-minimal mappings is established within the class Hˉ2(X,Y)\bar{\mathscr H}_2(X, Y) of strong limits of homeomorphisms in the Sobolev space W1,2(X,Y)W^{1,2}(X, Y), a result of considerable interest in the mathematical models of Nonlinear Elasticity. The inner variation leads to the Hopf differential hzhzˉˉdzdzh_z \bar{h_{\bar{z}}} dz \otimes dz and its trajectories. For a pair of doubly connected domains, in which XX has finite conformal modulus, we establish the following principle: A mapping hHˉ2(X,Y)h \in \bar{\mathscr H}_2(X, Y) is energy-minimal if and only if its Hopf-differential is analytic in XX and real along the boundary of XX. In general, the energy-minimal mappings may not be injective, in which case one observes the occurrence of cracks in XX. Nevertheless, cracks are triggered only by the points in the boundary of YY where YY fails to be convex. The general law of formation of cracks reads as follows: Cracks propagate along vertical trajectories of the Hopf differential from the boundary of XX toward the interior of XX where they eventually terminate before making a crosscut.Comment: 51 pages, 4 figure

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri=0.14T^*_{tri}=0.14 and ρtri=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR
    corecore