1,637 research outputs found
Efficacy of Some Combination Regimens of Oral Hypoglycaemic Agents in Type 2 Diabetes Mellitus Patients
Purpose: To examine the efficacy of selected oral hypoglycaemic agent (OHA) regimens in a small group of patients receiving such treatment.Methods: This was a retrospective, observational study that involved patients who had been diagnosed with type 2 diabetes mellitus and undergoing routine follow-up at a teaching hospital. By reviewing patients’ medical records, changes in fasting blood glucose (FPG) and glycated haemoglobin (HbA1c) levels induced by several OHA cobmination regimens were documented. Target FPG and HbA1c were defined as 4.4 - 6.1 mmol/L and 6.5 %, respectively.Results: Based on the medical records of 156 patients reviewed, the combination of metformin and gliclazide was the most commonly prescribed regimen (63.46 %). The use of gliclazide + rosiglitazone + acarbose produced the greatest reduction in FPG and HbA1c (-4.80 mmol/L and -4.20 %, respectively), but the number of patients receiving this combination was too small to allow definitive conclusions to be made. More patients in the triple OHA group were able to achieve the desired glycaemic control than those in the dual OHA group (FPG, 44.44 % versus 41.18 %; HbA1c, 52.94 % versus 47.06 %), highlighting the important benefits conferred by the use of multiple OHAs.Conclusion: The efficacy of various OHA combinations varies, and adding a third drug to a dual-agent regimen further reduces FPG and HbA1c levels. Though gliclazide + rosiglitazone + acarbose produces the greatest reduction in FPG and HbA1c levels, larger studies are required to confirm these findings.Keywords: Type 2 Diabetes Mellitus, Oral Hypoglycaemic Agents, Fasting Plasma Glucose (FPG), Glycated Haemoglobin (HbA1c), Combination Therapy, Gliclazide, Rosiglitazone, Acarbos
A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function
In the present paper, we derive a closed-form solution of the multi-period
portfolio choice problem for a quadratic utility function with and without a
riskless asset. All results are derived under weak conditions on the asset
returns. No assumption on the correlation structure between different time
points is needed and no assumption on the distribution is imposed. All
expressions are presented in terms of the conditional mean vectors and the
conditional covariance matrices. If the multivariate process of the asset
returns is independent it is shown that in the case without a riskless asset
the solution is presented as a sequence of optimal portfolio weights obtained
by solving the single-period Markowitz optimization problem. The process
dynamics are included only in the shape parameter of the utility function. If a
riskless asset is present then the multi-period optimal portfolio weights are
proportional to the single-period solutions multiplied by time-varying
constants which are depending on the process dynamics. Remarkably, in the case
of a portfolio selection with the tangency portfolio the multi-period solution
coincides with the sequence of the simple-period solutions. Finally, we compare
the suggested strategies with existing multi-period portfolio allocation
methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process
dynamics and the analysis of increasing horizon are included in the
simulation study, under revision in Annals of Operations Researc
The accessory papillary muscle with inferior J-waves - peculiarity or hidden danger?
Originally described in 1953, today the so-called J-wave is the source of much controversy. As a marker of so-called "early repolarization", this variant has been regarded as a totally benign variant since the 1960's. However, since then a wealth of data have indicated that the J-wave may be a marker of a highly arrhythmogenic substrate with a resultant high risk of sudden cardiac death
Origination of New Immunological Functions in the Costimulatory Molecule B7-H3: The Role of Exon Duplication in Evolution of the Immune System
B7-H3, a recently identified B7 family member, has different isoforms in human and mouse. Mouse B7-H3 gene has only one isoform (2IgB7-H3) with two Ig-like domains, whereas human B7-H3 has two isoforms (2IgB7-H3 and 4IgB7-H3). In this study a systematic genomic survey across various species from teleost fishes to mammals revealed that 4IgB7-H3 isoform also appeared in pigs, guinea pigs, cows, dogs, African elephants, pandas, megabats and higher primate animals, which resulted from tandem exon duplication. Further sequence analysis indicated that this duplication generated a new conserved region in the first IgC domain, which might disable 4IgB7-H3 from releasing soluble form, while 2IgB7-H3 presented both membrane and soluble forms. Through three-dimensional (3D) structure modeling and fusion-protein binding assays, we discovered that the duplicated isoform had a different structure and might bind to another potential receptor on activated T cells. In T cell proliferation assay, human 2IgB7-H3 (h2IgB7-H3) and mouse B7-H3 (mB7-H3) both increased T cell proliferation and IL-2, IFN-γ production, whereas human 4IgB7-H3 (h4IgB7-H3) reduced cytokine production and T cell proliferation compared to control. Furthermore, both h2IgB7-H3 and mB7-H3 upregulated the function of lipopolysacharide (LPS)-activated monocyte in vitro. Taken together, our data implied that during the evolution of vertebrates, B7-H3 exon duplication contributed to the generation of a new 4IgB7-H3 isoform in many mammalian species, which have carried out distinct functions in the immune responses
Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population
Mineral nutrient malnutrition, and particularly
deficiency in zinc and iron, afflicts over 3 billion people
worldwide. Wild emmer wheat, Triticum turgidum ssp.
dicoccoides, genepool harbors a rich allelic repertoire for
mineral nutrients in the grain. The genetic and physiological
basis of grain protein, micronutrients (zinc, iron,
copper and manganese) and macronutrients (calcium,
magnesium, potassium, phosphorus and sulfur) concentration
was studied in tetraploid wheat population of 152
recombinant inbred lines (RILs), derived from a cross
between durum wheat (cv. Langdon) and wild emmer
(accession G18-16). Wide genetic variation was found
among the RILs for all grain minerals, with considerable
transgressive effect. A total of 82 QTLs were mapped for
10 minerals with LOD score range of 3.2–16.7. Most QTLs
were in favor of the wild allele (50 QTLs). Fourteen pairs
of QTLs for the same trait were mapped to seemingly
homoeologous positions, reflecting synteny between the A
and B genomes. Significant positive correlation was found
between grain protein concentration (GPC), Zn, Fe and Cu,
which was supported by significant overlap between the
respective QTLs, suggesting common physiological and/or
genetic factors controlling the concentrations of these
mineral nutrients. Few genomic regions (chromosomes 2A,
5A, 6B and 7A) were found to harbor clusters of QTLs for
GPC and other nutrients. These identified QTLs may
facilitate the use of wild alleles for improving grain
nutritional quality of elite wheat cultivars, especially in
terms of protein, Zn and Fe
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
Modelling knowlesi malaria transmission in humans: vector preference and host competence
Background: Plasmodium knowlesi, a malaria species that normally infects long-tailed macaques, was recently found to be prevalent in humans in Southeast Asia. While human host competency has been demonstrated experimentally, the extent to which the parasite can be transmitted from human back to mosquito vector in nature is unclear. Methods. Using a mathematical model, the influence of human host competency on disease transmission is assessed. Adapting a standard model for vector-borne disease transmission and using an evolutionary invasion analysis, the paper explores how differential host competency between humans and macaques can facilitate the epidemiological processes of P. knowlesi infection between different hosts. Results. Following current understanding of the evolutionary route of other human malaria vectors and parasites, an increasing human population in knowlesi malaria endemic regions will select for a more anthropophilic vector as well as a parasite that preferentially transmits between humans. Applying these adaptations, evolutionary invasion analysis yields threshold conditions under which this macaque disease may become a significant public health issue. Conclusions. These threshold conditions are discussed in the context of malaria vector-parasite co-evolution as a function of anthropogenic effects
A Novel Assay to Trace Proliferation History In Vivo Reveals that Enhanced Divisional Kinetics Accompany Loss of Hematopoietic Stem Cell Self-Renewal
BACKGROUND: The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts. CONCLUSIONS: Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs
Functional Mapping of Dynamic Traits with Robust t-Distribution
Functional mapping has been a powerful tool in mapping quantitative trait loci (QTL) underlying dynamic traits of agricultural or biomedical interest. In functional mapping, multivariate normality is often assumed for the underlying data distribution, partially due to the ease of parameter estimation. The normality assumption however could be easily violated in real applications due to various reasons such as heavy tails or extreme observations. Departure from normality has negative effect on testing power and inference for QTL identification. In this work, we relax the normality assumption and propose a robust multivariate -distribution mapping framework for QTL identification in functional mapping. Simulation studies show increased mapping power and precision with the distribution than that of a normal distribution. The utility of the method is demonstrated through a real data analysis
- …