45 research outputs found

    Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments

    Get PDF
    Oxysterol-binding protein related-protein 5 and 8 (ORP5/8) localize to the membrane contact sites (MCS) of the endoplasmic reticulum (ER) and the mitochondria, as well as to the ER-plasma membrane (PM) MCS. The MCS are emerging as important regulators of cell signaling events, including calcium (Ca2+) signaling. ORP5/8 have been shown to interact with phosphatidylinositol-4,5-bisphosphate (PIP2) in the PM, and to modulate mitochondrial respiration and morphology. PIP2 is the direct precursor of inositol trisphosphate (IP3), a key second messenger responsible for Ca2+-release from the intracellular Ca2+ stores. Further, mitochondrial respiration is linked to Ca2+ transfer from the ER to the mitochondria. Hence, we asked whether ORP5/8 would affect Ca2+ signaling in these cell compartments, and employed genetically engineered aequorin Ca2+ probes to investigate the effect of ORP5/8 in the regulation of mitochondrial and caveolar Ca2+. Our results show that ORP5/8 overexpression leads to increased mitochondrial matrix Ca2+ as well as to increased Ca2+ concentration at the caveolar subdomains of the PM during histamine stimulation, while having no effect on the cytoplasmic Ca2+. Also, we found that ORP5/8 overexpression increases cell proliferation. Our results show that ORP5/8 regulate Ca2+ signaling at specific MCS foci. These local ORP5/8-mediated Ca2+ signaling events are likely to play roles in processes such as mitochondrial respiration and cell proliferation.Peer reviewe

    Uncovering and Quantifying Social Biases in Code Generation

    Full text link
    With the popularity of automatic code generation tools, such as Copilot, the study of the potential hazards of these tools is gaining importance. In this work, we explore the social bias problem in pre-trained code generation models. We propose a new paradigm to construct code prompts and successfully uncover social biases in code generation models. To quantify the severity of social biases in generated code, we develop a dataset along with three metrics to evaluate the overall social bias and fine-grained unfairness across different demographics. Experimental results on three pre-trained code generation models (Codex, InCoder, and CodeGen) with varying sizes, reveal severe social biases. Moreover, we conduct analysis to provide useful insights for further choice of code generation models with low social bias. (This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.

    Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease

    Get PDF
    BACKGROUND: Sphingomyelin (SM) is the major phospholipid in cell membranes and in lipoproteins. In human plasma, SM is mainly found in atherogenic lipoproteins; thus, high levels of SM may promote atherogenesis. METHODS: We investigated in a median follow up of 6.0 years the association of SM with the incidence of a combined endpoint (myocardial infarction and cardiovascular death) in stable and unstable patients, and its relation to other marker of atherosclerosis in 1,102 patients with angiographically documented CAD and 444 healthy controls. RESULTS AND DISCUSSION: Logistic regression analysis showed that SM categorized by median was associated with an elevated risk for CAD (HR 3.2, 95%CI 2.5–4.0, p < 0.05). SM levels were correlated with apoB (r = 0.34) and triglyceride levels (r = 0.31). In patients with stable angina (n = 614), SM categorized by median was not related to incidence of a combined endpoint (cardiovascular death and myocardial infarction) (p = 0.844 by Log-rank test). However, in patients with acute coronary syndrome (n = 488), elevated SM was related to the combined endpoint (p < 0.05 by Log-rank test), also in a multivariate Cox regression analysis including potential confounders (HR 1.8, 95%CI 1.0–3.3, p < 0.05). CONCLUSION: The results of our study reveal that 1) human plasma SM levels are a risk factor for CAD; 2) the pro-atherogenic property of plasma SM might be related to metabolism of apoB-containing or triglyceride-rich lipoproteins; and 3) plasma SM levels are a predictor for outcome of patients with acute coronary syndrome

    ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells

    Get PDF
    https://doi.org/10.1096/fj.202000202ROxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P(2)countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P(2)content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P(2)distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM. Depletion of ORP2 from ECs inhibits their angiogenic tube formation capacity, alters the gene expression of angiogenic signaling pathways such as VEGFR2, Akt, mTOR, eNOS, and Notch, and reduces EC migration, proliferation, and cell viability. We show that ORP2 regulates the integrity of VEGFR2 at the PM in a cholesterol-dependent manner, the depletion of ORP2 resulting in proteolytic cleavage by matrix metalloproteinases, and reduced activity of VEGFR2 and its downstream signaling. We demonstrate that ORP2 depletion increases the PM PI(4,5)P(2)coincident with altered F-actin morphology, and reduces both VEGFR2 and cholesterol in buoyant raft membranes. Moreover, ORP2 knock-down suppresses the expression of the lipid raft-associated proteins VE-cadherin and caveolin-1. Analysis of the retinal microvasculature in ORP2 knock-out mice generated during this study demonstrates the subtle alterations of morphology characterized by reduced vessel length and increased density of tip cells and perpendicular sprouts. Gene expression changes in the retina suggest disturbance of sterol homeostasis, downregulation of VE-cadherin, and a putative disturbance of Notch signaling. Our data identifies ORP2 as a novel regulator of EC cholesterol and PI(4,5)P(2)homeostasis and cholesterol-dependent angiogenic signaling.Peer reviewe

    An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Lipid remodeling is crucial for malignant cell transformation and tumorigenesis, but the precise molecular processes involved and direct evidences for these in vivo remain elusive. Here, we report that oxysterol-binding protein (OSBP)-related protein 4 L (ORP4L) is expressed in adult T-cell leukemia (ATL) cells but not normal T-cells. In ORP4L knock-in T-cells, ORP4L dimerizes with OSBP to control the shuttling of OSBP between the Golgi apparatus and the plasma membrane (PM) as an exchanger of phosphatidylinositol 4-phosphate [PI(4)P]/cholesterol. The PI(4)P arriving at the PM via this transport machinery replenishes phosphatidylinositol 4,5-bisphosphate [PI(4,5)P-2] and phosphatidylinositol (3,4,5) trisphosphate [PI(3,4,5)P-3] biosynthesis, thus contributing to PI3K/AKT hyperactivation and T-cell deterioration in vitro and in vivo. Disruption of ORP4L and OSBP dimerization disables PI(4)P transport and T-cell leukemogenesis. In summary, we identify a non-vesicular lipid transport machinery between Golgi and PM maintaining the oncogenic signaling competence initiating T-cell deterioration and leukemogenesis. The oxysterol-binding protein-related protein 4 (ORP4L) is expressed in T-cell acute lymphoblastic leukemia and is required for leukemogenesis. Here the authors show that ORP4L orchestrates the transport of the phospholipid PI(4)P from Golgi to the plasma membrane, contributing to PI3K/AKT hyperactivation and T-cell leukemogenesis.Peer reviewe

    ORP4L Extracts and Presents PIP2 from Plasma Membrane for PLC beta 3 Catalysis : Targeting It Eradicates Leukemia Stem Cells

    Get PDF
    Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLC beta 3, enabling IP3 generation and subsequentCa(2+)-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.Peer reviewe

    A new method for determination of time-of-day breakpoints based on clustering and image segmentation

    No full text
    Signal control is an important part of the transportation system and plays an important role in improving the capacity of intersections. This paper proposes a new traffic time division method for multiperiod fixed-time control strategy. Firstly, we put forward a new concept — transportation overlap rate — to complete the clustering of daily traffic flow patterns. Then, all the daily traffic flow data belonging to the same category are composed into a matrix, which is converted into the corresponding image later with the aim of using the fast and robust fuzzy C-means clustering (FRFCM) method to segment it. Finally, the traffic time division and breakpoint location are obtained through further analysis and processing of the segmentation results. For each period, the optimal signal cycle and green split are separately calculated by Webster’s signal timing method to satisfy different traffic demands of each period and effectively improve the operation efficiency of the intersection. The simulation results at a certain intersection in the city of Mianyang demonstrate the effectiveness and practicability of the proposed method.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore