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Abstract

OSBP-related protein 8 (ORP8) encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid
metabolism. We generated an Osbpl82/2 (KO) C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-
weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were
analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL) cholesterol
(+79%) and phospholipids (+35%), while only minor increase of apolipoprotein A-I (apoA-I) was detected. In chow-fed
female KO mice a less prominent increase of HDL cholesterol (+27%) was observed, while on western diet the HDL
increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated
apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in
lecithin:cholesterol acyltransferase (LCAT) or hepatic lipase (HL) activity, or in the fractional catabolic rate of fluorescently
labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid
transfer protein (PLTP) activity, but only on chow diet. These findings are consistent with a model in which Osbpl8
deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes
secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-
specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase
(LPL) activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic
markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression
of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model, demonstrating
a HDL elevating effect of Osbpl8 knock-out and additional gender- and/or diet-dependent impacts on lipid metabolism.
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Copyright: � 2013 Béaslas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Academy of Finland (grants 121457 to VMO and 132629 to MJ) the Sigrid Jusélius Foundation, the Finnish Foundation
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Introduction

Oxysterol binding protein (OSBP) is a cytoplasmic protein with

affinity for a number of oxysterols [1,2]. It localizes in a sterol-

specific manner on Golgi membranes and regulates the trafficking

of ceramide from the endoplasmic reticulum (ER) to the Golgi

apparatus for sphinghomyelin synthesis [3]. OSBP also acts as

a sterol-dependent scaffold that modulates the activity of

extracellular signal-regulated kinases, ERK [4]. Families of

proteins homologous to OSBP are present in most eukaryotic

organisms. In humans and mice the gene/protein family consists

of 12 members [5–7]. The mammalian OSBP-related proteins

(ORPs) have been implicated as sterol sensors that regulate cellular

functions ranging from sterol, sphingolipid and neutral lipid

metabolism to vesicle transport and cell signaling [2,8,9].

ORP8 encoded by the Osbpl8 gene is a member of the ORP

family, with a trans-membrane segment at its C-terminus

specifying localization at the ER. We have previously reported

that ORP8 affects in human THP-1 macrophages the expression

of ATP-binding cassette transporter A1 (ABCA1) and cellular

cholesterol efflux [10], and ORP8 knock-down in Raw264.7

macrophage leads to several alterations in the cellular lipidome,

including increased levels of both free cholesterol and cholesterol

esters [11]. Moreover, we characterized the function of ORP8 in

hepatic cells and its interaction with the nucleoporin Nup62, and

demonstrated that adenovirus-mediated ORP8 overexpression in
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mouse liver affects lipid metabolism in vivo, resulting in a decrease

of plasma and liver tissue cholesterol and triglycerides (TG),

putatively via a reduction of active nuclear sterol regulatory

element binding proteins (SREBPs) [12]. We envision that ORP8

may, via Nup62 interaction, fine-tune the transcriptional control

of cellular lipid metabolism. Another aspect of its function most

likely involves targeting of the plasma membrane via the N-

terminal pleckstrin homology domain region (T.Vihervaara and

V.M.Olkkonen, unpublished), where ORP8 could play a role in

non-vesicular communication between the ER and the plasma

membrane with impacts on membrane lipid composition/lateral

organization and signaling processes. Interestingly, Osbpl8 was

recently found to be target of miR-143, a micro-RNA induced in

the liver in genetic and dietary mouse models of obesity, and the

hepatic ORP8 protein was shown to be down-regulated under

these conditions [13]. Prompted by the findings suggesting

a function of Osbpl8 in lipid homeostatic control, we characterize

in the present study the impacts of Osbpl8 deficiency on mouse

lipid metabolism. The mouse strain generated represents the first

viable mammalian Osbpl gene knock-out model.

Results

Osbpl82/2 (KO) Mice
To gain insight into the function of Osbpl8/ORP8 in vivo, we

generated Osbpl8 deficient mice by using gene trapped ES cells, in

which a gene trap is inserted in exon 5 of the Osbpl8 gene (Fig. 1).

The gene trapped Osbpl8 allele was brought into .98% C57Bl/6

genetic background. Successful knock-out was verified by Western

analysis of tissues and peritoneal macrophages of wild-type (WT),

Osbpl82/2 (Osbpl8KO), or Osbpl8+/2 animals, by using anti-

bodies specific for ORP8. The analysis revealed the absence of

immunoreactive ORP8 protein in Osbpl8KO mouse tissues which

in WT animals express the protein abundantly: liver, brain,

kidney, spleen, and macrophages [10](Fig. 2). The macrophages of

heterozygotic Osbpl8+/2 mice displayed an intermediate level of

ORP8 protein as compared to the WT and KO animals. No

apparent defects in general health or fertility were observed in the

KO mice.

Plasma Lipids/lipoproteins of the Osbpl8KO Mice
To investigate whether Osbpl8 deficiency causes changes in

plasma lipids and lipoproteins, groups of 13-week old WT or

Osbpl8KO mice were fed either regular chow or high-fat diet

(21.2%% fat, 0.2% cholesterol) for 5 weeks. Fasting blood samples

were withdrawn at the beginning (0 weeks) and the end of the 5-

week dietary period, and plasma lipids (total cholesterol, TC; free

cholesterol, FC; triglycerides, TG; choline-containing phospholi-

pids, PL) were analyzed by enzymatic assays (Table 1). Significant

increases of plasma TC, FC and PL were detected at the starting

time point in both genders of the Osbpl8KO mice (age 13 weeks);

Additionally, the TG were significantly increased in female KO

mice relative to WT littermates. After further 5 weeks on chow diet

(age 18 weeks) the male KO mice displayed elevated TC and FC,

and a statistically non-significant tendency of PL increase as

compared to WT littermates, while the females showed tendencies

of TC, FC and PL elevation and a significant elevation of TG.

After 5 weeks on Western diet both genders of KO mice displayed

significantly elevated levels of plasma TC, FC, and PL as

compared to WT littermates, while the TG were increased

significantly in KO males. Quantification of apolipoprotein A-I

(apoA-I) revealed in both genders a modest (16% for females; 10%

for males) but statistically significant (p,0.05) elevation in

Osbpl8KO mouse plasma at the starting point (Table 1). After

the 5-week diet period, no consistent apoA-I elevation was

observed in the Osbpl8KO mice, the only significant difference

found being an elevated level in chow diet-fed KO females.

Figure 1. Gene trap (GT) insertion site in Osbpl8. Insertion of the pGT vector in the 5th intron of the Osbpl8 gene in chromosome 10 generates
a b-geo fusion mRNA transcript through the use of the En-2 splice acceptor (SA) contained in the vector. The insertion site (nt position indicated) was
identified by PCR, using primers targeting gDNA in 5th intron of Osbpl8 gene (Fwd), and in the 1st intron of En2 (Rev1).
doi:10.1371/journal.pone.0058856.g001

Figure 2. Western blot analysis of ORP8 in KO mouse tissues
and peritoneal macrophage. Total protein specimens (20 mg
protein/lane) of tissues with abundant ORP8 expression: spleen, brain,
kidney, and liver (WT and Osbpl8KO animals), and of peritoneal
macrophage (WT, Osbpl8+/2, and Osbpl82/2) were analyzed by
Western blotting with ORP8 and b-actin antibodies. ORP8 runs for an
unknown reason as a doublet of bands with the apparent molecular
masses of 97 and 101 kDa, as described in [10].
doi:10.1371/journal.pone.0058856.g002

Lipid Homeostasis in Osbpl8KO Mice
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Lipoprotein profile analysis was carried out to investigate in

which lipoprotein class(es) the observed TC, PL and TG increases

are localized. A marked increase of both TC and PL in the high-

density lipoprotein (HDL) of Osbpl8KO male plasma was

revealed as compared with WT controls after both chow (TC,

+79%; PL, +35%; Fig. 3C,D) and Western diet (TC, +37%; PL,

+21%; Fig. 3) feeding, and in female KO mice after the Western

diet (TC, +58%; PL, +46%). After 5-weeks on chow diet the

increase of HDL-C in the female KO mice was not as prominent

(+27%) as in the other data points, and there was hardly any PL

elevation detectable (Fig. 3). The HDL-C and PL increase

(females: TC, +51%; PL, +30%; males: TC, +40%; PL, +35%)

was detectable in both genders at the starting point (data not

shown). Despite the observed increase of HDL-C and –PL in the

KO animals, it was not possible to detect a consistent particle size

change in the size exclusion chromatography, due a limited

resolution of the column set-up in this molecular weight region.

The TG increase observed in the female Osbpl8KO mice on chow

diet, and in male KO mice after the Western diet, localized almost

exclusively to the very-low-density lipoprotein fractions (Fig. 3).

The apolipoprotein composition of chow diet-fed WT and KO

animal plasma was further investigated by Western blot analysis

with specific antibodies against mouse apoA-II, apoC-III and

apoE (Fig. 4A). No difference between the genders or the

genotypes was observed in apoA-II levels. ApoC-III was more

abundant in female than male mice, but no difference between

genotypes was detected. Interestingly, an elevated level of apoE

was present in the plasma of male Osbpl8KO mice as compared to

WT males, while such increase was not detectable for the female

gender (Fig. 4A). Analysis of apoE in the lipoprotein fractions of

the mice localized the increase of apoE in male KO animals to the

fractions where HDL particles elute (Fig. 4A, bottom panel), which

also showed an elevated cholesterol and PL content (Fig. 3); apoE

was undetectable in the VLDL fractions (data not shown). In

Western diet-fed animals a similar increase of plasma and HDL

apoE was evident in the male but not female KO mice, which

rather showed a tendency of reduced HDL apoE content as

compared to WT littermates (Fig. 4B).

Hepatic lipid Content of the Osbpl8KO Animals
The liver tissue total TC, PL, and TG concentrations of the WT

and Osbpl8KO mice were determined, revealing a significant

elevation (from 5.560.4 to 7.160.3 mmol/g, p = 0.01) of TC in

the tissue of Western diet-fed female (but not male) KO mice as

compared WT littermates. Additionally, in both female and the

male KO mice on chow diet a statistically insignificant tendency

(p = 0.12) of elevated hepatic TG content was evident (Table 2).

Body Weight of the Animals
During the Western but not the chow diet, the weight of WT

and Osbpl8KO mice of both genders increased significantly, with

no difference observed between the genotypes (Table S2).

Plasma LCAT, HL, LPL and PLTP Activity of the Osbpl8KO
Mice
To search for putative explanations for the observed increase of

HDL, we assayed the activities of plasma HDL modifying

proteins, LCAT [14], PLTP [15], and HL [16]. In addition,

LPL activity which can indirectly affect HDL [17], was de-

termined. LCAT, HL, and LPL activity was measured from

plasma of chow-diet fed animals, the lipases from plasma collected

after intravenous heparin injection, while PLTP activity was

determined for all plasma specimens of the diet experiment. No

statistically significant differences in LCAT or HL activity were

detected between Osbpl8KO and WT animals of either gender,

whereas LPL activity was significantly reduced (by 38%) in the

Osbpl8KO females as compared to WT animals (Table 3),

consistent with the elevated plasma TG levels observed in these

animals (Table 1). Interestingly, PLTP activity was reduced in

both female (by 44%, p,0.05) and male (by 39% p=0.05) KO

animals on regular chow, but not on Western diet.

Table 1. Fasting plasma lipid concentrations of WT and Osbpl8KO mice before (n = 12) and after (n = 6) the diets.

t = 0 TC# p## FC p TG p PL p apoA-I1 p

FemaleWT 1.80660.130 0.50960.044 0.60260.051 1.77960.111 0.9460.03

Female KO 2.57560.162 0.0013** 0.76860.067 0.0043** 0.88860.055 0.001** 2.37406101 6.45E–4*** 1.160.03 0.0024**

Male WT 2.30960.096 0.76960.030 1.07460.071 2.55560.110 1.2760.03

Male KO 3.44260.104 5.75E–8*** 1.18160.044 3.10E–7*** 1.07660.0.47 0.983 3.26260.081 4.58E–5*** 1.3960.04 0.026*

t = 5 wk
Chow diet

Female WT 2.05660.222 0.55860.040 0.71660.054 1.97460.194 1.0560.08

Female KO 2.47860.122 0.136 0.63760.029 0.142 0.98960.057 0.00605** 2.21560.097 0.303 1.4260.11 0.023*

Male WT 2.69960.067 0.83260.024 1.27060.083 2.93360.095 1.7260.1

Male KO 3.24760.400 0.0119** 1.01760.109 0.00391** 1.21960.294 0.705 3.55160.303 0.0999 1.4560.16 0.17

t = 5 wk
Western diet

Female WT 2.49060.159 0.68060.026 0.80760.049 1.85260.143 1.4560.02

Female KO 3.88760.242 0.00106** 0.97960.044 3.87E–4*** 0.94060.048 0.0824 2.49160.200 0.0286* 1.5160.07 0.47

Male WT 4.79160.279 1.26760.049 1.09960.084 3.56360.178 2.0760.08

Male KO 5.90760.304 0.0224* 1.57060.037 8.44E–4*** 1.37260.063 0.0283* 4.13160.060 0.023* 2.2260.17 0.43

#TC, total cholesterol; FC, free cholesterol; TG, triglycerides; PL, choline-containing phospholipids; mmol/L.
##T-test, comparison between genotypes; *p,0.05, **p,0.01, ***p,0.001.
1apolipoprotein A-I; mg/ml.
doi:10.1371/journal.pone.0058856.t001

Lipid Homeostasis in Osbpl8KO Mice
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HDL Catabolism in the Osbpl8KO Mice
To assess the possibility that the HDL elevation detected in the

Osbpl8KO mice could be due to impaired catabolism of HDL

particles, we injected groups of chow-fed WT and Osbpl8KO

animals with Alexa568-labeled WT mouse HDL, and followed the

decay of fluorescence in plasma during a time course for up to

24 h. The HDL fluorescence decay curves were practically

identical, thus revealing no difference in the HDL fractional

catabolic rate (Fig. 5).

Cholesterol Biosynthetic and Absorption Markers in the
Plasma of Ospbl8KO Mice
The previous findings that adenoviral ORP8 overexpression in

mouse liver reduced plasma total cholesterol, and excess ORP8 in

HuH7 hepatocytes dampened cholesterol biosynthesis [12],

prompted us to analyze non-cholesterol sterol markers of

cholesterol biosynthesis and absorption in the plasma of fasted

chow-fed WT and Osbpl8KO animals. This analysis revealed

a gender-specific, significant increase of the cholesterol bio-

synthetic markers cholestenol, desmosterol, and lathosterol in the

male KO mice as compared to WT controls (Table 4), suggesting

enhanced mevalonic acid pathway activity in these animals. No

significant differences were observed between the WT and KO

mice in the plasma levels of sterol absorption markers cholestanol,

campesterol, sitosterol, or avenasterol (Table 4), consistent with the

view that intestinal sterol absorption is not significantly affected by

Osbpl8 deficiency.

Hepatic Expression of mRNAs and Proteins Involved in
Lipid Metabolism
The fact that an HDL elevation in Osbpl8KO mice was

detected in both chow and Western diet fed animals suggested that

the effect is not due to a difference in lipid absorption, but rather

in hepatic HDL synthesis or in HDL catabolism. However, we

found no defect in the capacity of the KO animals to catabolize

HDL (Fig. 5). We therefore analyzed by qPCR a number of

mRNAs encoding proteins which could potentially impact hepatic

HDL synthesis, as well as the hepatic protein levels of ABCA1,

a key player in HDL biosynthesis and secretion [18,19], and SR-

B1, which acts as a receptor in the selective uptake of HDL

cholesteryl esters by the liver and steroidogenic tissues [20]. The

mRNA quantification revealed only modest alterations in the

Osbpl8KO mice, which in many cases reached statistical

significance in only one gender, the other gender often showing

a change or a tendency in the opposite direction (Fig. 6A). As an

example, the Abca1 mRNA was significantly up-regulated in the

Figure 3. Effects of Osbpl8KO on the lipoprotein profile. Pools of mouse plasma were fractionated by size exclusion chromatography as
specified in Material and Methods, followed by analysis of total cholesterol, triglycerides, and choline-containing phospholipids (identified at the top)
in the fractions. The 5-week diet, chow (CHOW), or Western diet (WTD), as well as the gender, are indicated on the left. WT, blue; KO, red. Each panel
represents an average of 2 pools analyzed, each consisting of 3 animals. Elution positions of HDL and VLDL are indicated in the first two panels.
doi:10.1371/journal.pone.0058856.g003

Lipid Homeostasis in Osbpl8KO Mice
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liver of female KO mice, while an opposite but non-significant

tendency was evident in males. Similarly, the mRNA for acetyl-

coenzyme A carboxylase 1 (Acc1) was significantly up-regulated in

female KO mice, but showed a tendency of down-regulation in

KO males, whereas the lipogenic transcription factor regulating

this gene, sterol regulatory element binding protein 1c (Srebp-1c),

was down-regulated in male KOs and showed a tendency of

reduction also in females. Of the mRNAs encoding lipases that

control HDL levels, we observed a significant down-regulation in

hepatic lipase (Lipc) mRNA in male animals, and an opposite

tendency in females. Other significant mRNA changes observed

were a down-regulation of liver X receptor-a (Lxra) and its target

gene cholesterol 7a-hydroxylase (Cyp7a1), as well as Srebp-2 and

its target 3-hydroxy-3-methylglutaryl-coenzyme A reductase

(Hmgcr) in male KO animals, the latter observation being notably

inconsistent with the observed increase of cholesterol biosynthesis

markers in the plasma of the KO males. In accordance with the

mRNA findings, there were no differences between the genotypes

in hepatic SR-B1 (Scarb1) protein levels as determined by Western

analysis. The ABCA1 protein quantity was moderately elevated in

KO females and reduced in KO males as compared to WT

littermates; These differences, however, did not reach statistical

significance (Fig. 6B). The hepatic mRNA and protein findings

thus did not provide any clearly defined mechanistic explanations

for the observed lipid phenotypes. However, they further support

the conclusion that Osbpl8 deficiency has pleiotropic and gender-

specific effects on lipid homeostatic machineries and suggest

a multi-faceted regulatory role of the ORP8 protein.

Immunohistochemistry (IHC) Analysis of ABCA1, apoA-I
and apoE in Osbpl8KO Mouse Liver and Kidney
To assess possible changes in the hepatocellular distribution of

ABCA1, a major controller of HDL biogenesis, as well as the

apolipoproteins apoA-I and apoE, we carried out IHC of the liver

of chow diet-fed WT and Osbpl8KO mice. The morphology and

the ABCA1 staining patterns of the WT and KO tissues were

indistinguishable: A relatively even ABCA1 immunoreactivity in

the hepatocytes was observed, with some cells showing a more

intense staining than others (Fig. S1), similar to the pattern

previously reported [21]. ApoA-I staining was observed within the

sinusoidal compartments, apparently reflecting plasma immuno-

reactivity (Fig. S2). Also the apoE antibody stained the sinusoids,

but displayed an additional intracellular staining of granular-like

structures in hepatocytes, possibly representing secretory orga-

nelles, with no detectable difference between the WT and KO

tissues (Fig. S3). Moreover, we stained apoA-I and apoE in WT

and Osbpl8KO kidney, an organ with an important role in HDL

catabolism. Staining with both antibodies was localized in the

vascular lumen compartments and the glomeruli, with no

detectable difference between the genotypes (data not shown).

Figure 4. Western blot analysis of HDL apolipoproteins in WT
and KO mouse plasma and high-density lipoprotein fractions.
A. Chow diet-fed animals; ApoA-II, ApoC-III, and ApoE (identified on the
right) in the fasting plasma (Pla) of WT and KO mice of both genders
(identified at the top); Bottom panel, ApoE in the HDL peak fractions of
plasma fractioned on a Suprose HR 6 10/30 column. B. Western diet-fed
animals; ApoE in the plasma (Pla) and HDL fractions (HDL) of WT and KO
mice of both genders (identified at the top). The plasma loading was
3 ml/lane of 1/40 dilution, and that of Superose 6 HR 10/30 HDL
fractions 150 ml/lane concentrated by acetone precipitation. The
analysis was carried out for pooled plasma and HDL fractions isolated
from the same pools; Chow diet, 3 animals/pool; Western diet, 6
animals/pool.
doi:10.1371/journal.pone.0058856.g004

Table 2. Liver tissue lipid content of the WT and Osbpl8KO mice.

Triglycerides mmol/g
(Mean6s.e.m.) p-value*

Cholesterol mmol/g
(Mean6s.e.m.) p-value

Phospholipids mmol/g
(Mean6s.e.m.) p-value

Chow diet

Female WT 7.160.5 0.12 4.260.1 0.96 0.9160.06 0.45

Female KO 8.460.5 4.160.4 0.9860.07

Male WT 6.160.2 0.12 3.960.2 0.19 1.1660.08 0.98

Male KO 9.061.6 4.360.2 1.1660.04

Western diet

Female WT 20.062.6 0.32 5.560.4 0.01 1.1660.07 0.94

Female KO 23.862.3 7.160.3 1.1660.03

Male WT 24.965.0 0.85 4.860.3 0.77 0.9760.10 0.89

Male KO 23.564.3 4.960.2 0.9560.02

*T-test, comparison between genotypes, n = 6.
doi:10.1371/journal.pone.0058856.t002

Lipid Homeostasis in Osbpl8KO Mice
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Nascent HDL Produced by ORP8-deficient Hepatocytes
To assess a putative role of ORP8 in the production and

lipidation of nascent HDL produced by hepatocytes, we employed

the mouse hepatoma cell line Hepa1-6, which was subjected to

shRNA-mediated silencing of Osbpl8 (Fig. 7A). The nascent HDL

secreted into the culture medium was fractioned by size exclusion

chromatography and its phospholipid (PL) molecular species

profile was analyzed by ESI-MS. The results revealed a marked

increase of small apoA-I containing particles secreted into the

growth medium by ORP8 knock-down (shORP8) cells as

compared to controls expressing non-targeting shRNA

(shNT)(Fig. 7B). The particles appeared in the size exclusion

chromatography as a double peak with the apparent molecular

masses of 75 and 25 kDa. In ESI-MS analysis of phospholipids in

the pooled apoA-I containing fractions (nos 30–39), 13 phospha-

tidylcholine (PC) species, of which PC34:1, PC36:2, PC36:1, and

PC32:1 were most abundant, as well as sphingomyelin (SM) 16:0

were detectable. The analysis revealed no difference in the

phospholipid molecular species composition between the apoA-I-

containing fractions from shNT and shORP8 cells (data not

shown). These results suggest that, even though the shORP8

hepatocytes appear to display an increased capacity to secrete

nascent HDL, the phospholipids associated with apoA-I secreted

by ORP8-depleted and control hepatocytes do not differ

significantly.

Discussion

In this study we created the first viable Osbpl gene knock-out

mouse model and characterized the effects of Osbpl8 deficiency on

mouse lipoprotein metabolism. In the KO mice, no immunore-

active ORP8 protein was present in tissues/cells earlier reported to

express ORP8 at highest levels: liver, brain, kidney, spleen, and

peritoneal macrophages [10], suggesting that the knock-out

generated by using gene-trapped ES cells is global, and that

Osbpl8 is not essential for viability.

Analysis of the Osbpl8KO mouse plasma lipids and

lipoproteins revealed a significant increase of cholesterol and

choline phospholipids as compared to wild-type littermates,

reflecting their increase specifically in HDL particles. The HDL

increment was prominent in both genders on Western diet,

while in chow diet-fed animals it was less pronounced in

females than males. The HDL increase was accompanied by an

elevated level of apoE in the plasma and HDL of male KO

mice. Adenoviral overexpression of Osbpl8 in mouse liver was

previously shown to result in a reduction of plasma and liver

tissue cholesterol and TG [12], consistent with the present

increase of plasma cholesterol upon Osbpl8 deficiency. Howev-

Table 3. Plasma PLTP and LCAT activity levels at t = 0 (A), PLTP activity level at t = 5 weeks (B), and HL/LPL activity in post-heparin
plasma of chow-fed mice (C).

t = 0

PLTP activity
mmol/ml/h
(Mean6s.e.m.) p-value

LCAT activity
mmol/ml/h
(Mean6s.e.m.) p-value

Female WT 18.0061.70 0.60* 10.360.86 0.16

Female KO 19.2561.59 7.560.56

Male WT 14.5861.40 0.57 6.160.41 0.47

Male KO 15.7061.33 6.660.45

t = 5 weeks PLTP activity
mmol/ml/h
(Mean6s.e.m.)

p-value

Western diet

Female WT 17.4562.38 1

Female KO 17.4461.49

Male WT 24.9463.02 0.68

Male KO 23.4261.84

Chow diet

Female WT 12.4261.31 ,0.05

Female KO 6.9262.06

Male WT 12.9261.50 0.05

Male KO 7.8761.69

Chow diet HL activity
mmol FFA/ml/h
(Mean6s.e.m.)

p-value LPL activity
mmol FFA/ml/h (Mean6s.e.m.)

p-value

Female WT 8.6860.79 0.11 26.0060.99 ,0.05

Female KO 11.4460.49 16.2260.97

Male WT 7.7560.19 0.19 17.460 0.15

Male KO 8.4860.45 15.0660.47

*T-test, comparison between genotypes, n = 4–6 (A), n = 6 (B,C).
doi:10.1371/journal.pone.0058856.t003
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er, analysis of plasma lipoprotein fractions was not reported in

the overexpression study, which makes a detailed comparison of

the results impossible. We found no evidence for altered LCAT

or HL activity between the WT and Osbpl8 animals, which

might have explained the observed HDL elevation [14,16].

Interestingly, the KO mice displayed a reduced plasma PLTP

activity, but only on chow diet. PLTP deficiency was previously

shown to reduce, not increase, the plasma HDL [22]. This,

together with the diet-dependency of the effect on PLTP, makes

it unlikely that altered PLTP activity could be the cause of the

HDL elevation observed in both chow and Western diet-fed

animals. Analysis of the fractional catabolic rate of exogenously

administered mouse HDL revealed no difference between the

genotypes, suggesting that the Osbpl8 deficiency does not

impair the capacity of the animals to catabolize HDL. The

HDL elevation was evident in the Osbpl8 KO mice in-

dependently of the diet (albeit less prominent in female KO

mice on chow diet), suggesting that it is not due to a difference

in intestinal lipid absorption. The fact that HDL lipids were in

the present study elevated more strongly than apoA-I suggests

that the lipidation of HDL particles is enhanced in the KO

animals. Approximately 70–80% of HDL in mouse is of hepatic

origin [23,24], and ABCA1 plays a key role in the lipidation

and secretion of nascent apoA-I in hepatocytes [18,19].

However, analysis of hepatic ABCA1 mRNA and protein

levels, or immunohistochemical analysis of ABCA1 distribution,

provided no direct synthesis-related explanation to the HDL

elevation detected in both genders. Furthermore, no significant

alteration in hepatic apoE mRNA expression was detected,

which could have explained the observed increase of apoE in

the plasma and HDL of male KO mice. Interestingly, the male

KO mice displayed elevated plasma levels of non-cholesterol

sterol markers for sterol biosynthesis, suggesting a gender-

specific enhancement of hepatic mevalonic acid pathway

activity. This finding appears to be in line with the previous

report where ORP8 overexpression in mouse liver was shown to

dampen the expression of cholesterol biosynthetic pathway

genes controlled by SREBP-2 [12]. However, we found no

evidence for a corresponding increase of HMGCoA reductase

or synthase mRNAs in the male KO mice, suggesting that the

putative enhancement of cholesterol biosynthesis in vivo may

occur via a different, possibly post-transcriptional mechanism.

Thus far the mechanisms of ORP function have remained

poorly understood. However, a number of functional clues point

to action as lipid sensors at contacts where the endoplasmic

reticulum (ER) communicates with other membraneous orga-

nelles, termed membrane contact sites, MCS [25–28]. Another

emerging theme is the interaction of ORPs with phosphoinositides,

particularly phosphatidylinositol-4-phosphate (PI4P), which med-

iates the membrane association of ORPs, a process regulated by

the binding of sterol within the OSBP-related ligand-binding

(ORD) domain of the proteins [29–31]. ORP8 has a C-terminal

trans-membrane segment that targets the ER and the nuclear

envelope [10], while its N-terminal pleckstrin homology domain

region has the capacity to target the plasma membrane

Figure 5. HDL catabolism in Osbpl8KO mice. Chow-fed WT and
Osbpl8KO (n= 4–6) female (A) or male (B) animals were injected with
Alexa568-labeled mouse HDL (40 mg protein/animal), and the fluores-
cence signal (y-axis; mean 6 s.e.m., % of starting value at 5 min post-
injection) in their plasma as a function of time (x-axis) was measured as
specified in Materials and Methods.
doi:10.1371/journal.pone.0058856.g005

Table 4. Non-cholesterol sterols in the plasma of WT and Osbpl8KO mice (n = 6).

mg/100 ml
(Mean6s.e.m.) Female WT Female KO p-value# Male WT Male KO p-value

Cholestanol 399.3068.81 337.61614.37 0.978 504.22622.25 472.62623.28 0.469

Cholestenol 22.0063.01 29.3362.50 0.090 25.8361.72 50.6769.02 0.0221*

Desmosterol 82.5067.98 84.20612.20 0.613 130.6769.88 296.17642.17 0.0034**

Lathosterol 18.0062.08 22.8362.04 0.128 29.0062.31 52.1767.75 0.0168*

Campesterol 2066.506274.82 2288.336121.50 0.477 2990.006190.85 3176.506437.17 0.704

Sitosterol 699.336100.63 714.67642.50 0.891 991.50657.42 1189.006129.72 0.194

Avenasterol 66.1766.05 73.5065.33 0.384 85.0064.97 105.50610.61 0.111

Squalene 16.6763.09 18.8362.30 0.524 25.3363.29 25.6062.78 0.502

#T-test, comparison between genotypes; *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0058856.t004
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Figure 6. Liver mRNA and protein expression analysis of chow-fed Osbpl8KO mice. A: qPCR analysis of the quantity of the mRNAs
identified at the bottom in chow-fed KO females (open bars) and males (closed bars). The mRNAs were quantified using ribosomal protein 36B4
message as a housekeeping reference. The data are expressed relative to quantity in littermate WT animals of the same gender, and represent mean
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(T.Vihervaara and V.M.Olkkonen, unpublished). We therefore

envision that part of ORP8 may act at ER-plasma membrane

contacts, where it could, guided by sterol and phosphoinositide

signals, regulate lipid metabolizing or remodeling enzymes [27],

lateral lipid domains [32], or signaling events [13]. Interestingly,

we found in ORP8-depleted mouse hepatocytes a significant

increase of nascent HDL secreted into the culture medium, which

could reflect modulation of signaling events that control HDL

biogenesis. It has also been suggested that ORP8 may, via

interaction with nucleoporin Nup62, modify nuclear functions

involving the transcriptional control of lipid metabolism [12].

However, the present mRNA analyses only revealed mild and

gender-specific effects of Osbpl8 deficiency on genes of lipid

metabolism, with no apparent correlations with the observed lipid

phenotypes, suggesting that the impacts of the knock-out rather

reflect altered post-transcriptional regulation. Yang et al. [33]

reported than many hepatic genes in mouse show sexual

dimorphism. Furthermore, the largest changes in gene expression

between females and males were observed in genes involved in

steroid and lipid metabolism. The gender-specific impacts of

Osbpl8 deficiency on LPL activity, cholesterol biosynthesis

markers, and on hepatic gene expression most likely reflect such

sexual dimorphism, and underscore the crucial importance of

investigating the two genders separately.

The present study represents the first report of a viable Osbpl

knock-out mouse model. We demonstrate a function of endoge-

nous ORP8 as a controller of mouse plasma HDL. In addition to

the impact on HDL, the results reveal pleiotropic, gender- and/or

diet-specific effects of Osbpl8 deficiency on several parameters of

lipid/lipoprotein metabolism. Understanding in detail the molec-

ular mechanisms through which ORP8 exerts its multiple effects

on lipid homeostatic regulation is a challenging aim of future

investigations, for which the present KO mouse model will be an

instrumental tool.

Methods

Generation of Osbpl8 Knock-out (KO) Mice
An E14 mouse embryonic stem (ES) cell line containing

a gene trap construct in the Osbpl8 gene (clone DD00748) was

obtained from the Sanger Institute Gene Trap Resource

(SIGTR, [34]). The ES cells were microinjected in blastocyst

stage C57Bl/6 embryos producing germline chimeric mice. The

chimeric mice were bred with C57Bl/6 mice to obtain

heterozygous animals and again homozygous mice in the F2

generation. For this study the heterozygous animals were

repeatedly back-crossed with C57Bl/6 to bring the trapped

Osbpl8 gene in C57Bl/6 background. To speed up the process,

the fathers of each generation were selected based on data from

microarray SNP genotyping carried out using Illumina (San

Diego, CA) arrays (GT-104-1213), to identify males with the

largest proportion of C57Bl/6 strain chromatin. After 6

generations of breeding the strain used for the present

experiments was .98% C57Bl/6 congenic. The exact gene

trap (GT) insertion point was determined by performing

genomic PCR using GT and Osbpl8 specific primers. The

GT vector, which consists of a splice acceptor site linked to a b-
geo selectable marker, was found to be inserted into the 5th

intron of the Osbpl8 gene on chromosome 10. With 3 specific

primers, we distinguished wild-type (WT), heterozygote (+/2)

and homozygote (KO) mice using genomic PCR. The mouse

work was conducted under licenses (STH715A and STH847A)

granted by the National Animal Experiment Board (ELLA)

under Regional State Administrative Agency for Southern

Finland, in conformity with the Public Health Service (PHS)

Policy on Humane Care and Use of Laboratory Animals. The

ELLA is the appropriate authority to authorize animal

experimentation; Approval by the institution is not necessary.

6 s.e.m. (n = 6; *p,0.05, **p,0.01, T-test). B: Western blot analysis of ABCA1 and SR-B1 proteins in WT and KO mouse liver. The blots were probed
with anti-b-actin as a loading control. Densitometric quantification of the Western blot data is shown on the right. The results were normalized
against b-actin. The data represents mean 6 s.e.m. (n = 4).
doi:10.1371/journal.pone.0058856.g006

Figure 7. Nascent HDL produced by ORP8-deficient hepatocytes. Nascent HDL particles secreted into serum-free culture medium by Hepa1-
6 cells with ORP8 stably silenced with shRNAs (shORP8) or expressing non-targeting shRNA (shNT) were fractioned on a Superose 6 HR 10/30 column.
ApoA-I in the fractions was quantified with ELISA, and the associated phospholipids were analyzed by ESI-MS. A. Western blot of the Hepa1-6 cell
pools probed with anti-ORP8 (ORP8) and anti b-actin (Actin), showing the efficiency of ORP8 knock-down. B. ApoA-I in the Superose 6 HR 10/30
fractions. The data is normalized per mg total cell protein in the cultures. The data represents mean 6 s.e.m. (n = 3).
doi:10.1371/journal.pone.0058856.g007
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Mouse Genotyping
Genotyping animals from gDNA was performed by PCR, using

a set of 3 primers targeting (i) an intronic area before the GT

insertion, (ii) the GT insert, and (iii) intronic area after the GT

insertion: Fwd1, 59-TAgTggTTTAgTCTCTgCgAg-39, Rev1 59-

AgAAgCAggCCACCCAACTgA-39, and Rev2, 59-TAACgAg-

CAAACATgAgCCA-39. A 4-fold excess of Fwd1 primer relative

to the other two was used. The PCR product sizes are 162 bp for

the pair Fwd1-Rev1 and 341 bp for Fwd1-Rev2.

Mouse Maintenance and Diet
Mice were maintained at Helsinki University Laboratory

Animal center premises at a temperature of 21–22uC, 52%

humidity and light cycle of 12:12 h, on Global 16% rodent diet

2916 (Teklad, Harlan Laboratories, Inc., Indianapolis). For a diet

experiment, groups of Osbpl8 KO and WT littermate female and

male animals (n = 6 for each group, 4 groups per diet) at the age of

13 weeks were bled from vena saphena after 4 h fast and either

continued for 5 weeks on chow diet (a total of 24 animals), or were

fed ad libitum a high-fat (Western) diet (a total of 24 animals)

containing: 17.3% protein, 48.5% carbohydrate, 21.2% fat, 0.2%

cholesterol, contents by weight (Harlan adjusted calories diet,

TD.88137). At the end, the mice were again fasted for 4 h and

terminated with CO2, followed by withdrawal of blood through

heart puncture and snap freezing of tissue specimens in liquid N2.

The blood was drawn in EDTA tubes and plasma was separated

by centrifugation.

Plasma Lipid Analyses
Plasma triglycerides (GPO-PAP 1488872 kit, Roche Diagnos-

tics, Mannheim, Germany), total cholesterol (CHOD-PAP

1489232 kit, Roche Diagnostics) and choline-containing phospho-

lipids (Wako Chemicals, Richmond, VA, Phospholipids B-kit or

Daiichi Pure Chemicals, Tokyo, Japan, Pureauto S PL-kit) were

measured using enzymatic methods.

Size-exclusion Chromatography of Plasma Lipoproteins
Plasma lipoproteins were fractionated by fast-performance

liquid chromatography (FPLC; Merck-HPLC System) using

Superose 6 HR 10/30 size-exclusion chromatography column

(GE Healthcare, Buckinghamshire, UK). The column was

equilibrated with 10 mM Na-phosphate buffer, pH 7.4 containing

140 mM NaCl, and then 110–150 ml of plasma was applied to the

column with a flow rate of 0.5 ml/min, fractions of 0.5 ml were

collected, and analyzed for cholesterol, triglycerides, phospholipids

and apoA-I. For each group of 6 animals, two plasma pools of 3

animals each were analyzed.

Assay of Plasma PLTP Activity
For the radiometric PLTP activity assay, phosphatidylcholine

(PC) liposomes were prepared essentially as described by Damen

et al. [35] and the activity assay was carried out as described by

Jauhiainen and Ehnholm [36]. Prior to analysis, the fasting plasma

samples were diluted 1:10 with assay buffer and 4 ml of the dilution
was used for phospholipid transfer assay.

ApoA-I Quantification
Mouse apolipoprotein A-I (apoA-I) was quantified by a sandwich

enzyme-linked immunosorbent assay (ELISA) [37].

Assays for Lecithin:cholesterol Acyltransferase (LCAT),
Lipoprotein Lipase (LPL) and Hepatic Lipase (HL) Activity
LCAT activity in plasma of fasted (4 h) animals was assessed by

measuring cholesterol esterification activity in individual plasma

samples using exogenous proteoliposome [3H]cholesterol-HDL

discs as the substrate [38]. Post-heparin plasma was collected after

tail vein injection of 100 IU heparin per kg body weight, and

plasma LPL and HL activities were measured as previously

described [39,40]. Briefly, [Carboxyl-14C]-Triolein (S.A.

2.2 GBq/mmol, PerkinElmer, Waltham, MA) and glyceryl

trioleate (Sigma-Aldrich, St. Louis, MO) emulsified in the presence

of gum arabic was used as substrate. Post-heparin plasma samples

(15–25 uL) were incubated with the substrate and human serum

(as source for apoC-II, LPL cofactor) for 1 hour at 37uC. Hepatic

lipase was analyzed in the presence of 1 M NaCl to inhibit LPL

activity. Radioactivity was measured by liquid scintillation

counting (Wallac LS Counter, Turku, Finland). LPL and HL

activities are expressed as mmol FFA/mL/h.

Non-cholesterol Sterol Analysis
Fasting plasma cholesterol, cholesterol precursors (squalene,

cholestenol, desmosterol, and lathosterol), campesterol, sitosterol

and avenasterol (plant sterols), and cholestanol, a metabolite of

cholesterol, were quantified from nonsaponifiable plasma material

by capillary gas-liquid chromatography (GLC) (Agilent 6890N

Network GC System, Agilent Technologies, Wilmington, DE)

equipped with a 50 m long nonpolar Ultra 2 capillary column (5%

Phenyl-methyl siloxane) with 5a-cholestane as internal standard

[41]. The coefficients of variation are as follows: cholesterol 3.2%,

cholestanol 2.7%, desmosterol 6.0%, lathosterol 3.7%, campes-

terol 1.8%, and sitosterol 2.4%, respectively. The plasma values

are expressed as concentrations (mg/dl). The concentrations of

cholesterol precursors reflect whole-body cholesterol synthesis, and

those of plant sterols and cholestanol reflect cholesterol absorption

[42,43].

Liver Tissue Lipid Analyses
Sections of mouse liver tissue were excised, snap-frozen in liquid

nitrogen and stored at 270uC. Cellular lipids were extracted from

the tissue by the method of Folch et al. [44], and triglycerides were

measured as glycerol after chloroform–methanol extraction and

hydrolysis. Briefly, liver tissue (approximately 50–100 mg) was

homogenized and sonicated in 1 ml 95% methanol and mixed

with 2 ml chloroform. The organic phase was washed with 0.9%

NaCl solution and dried under nitrogen. The residuals were

dissolved in 200 ml of tetraethylammoniumhydroxide (diluted 1:28

with 95% ethanol) and incubated at 60uC for 30 min with 200 ml
of 0.05 M HCl. The formed glycerol was measured enzymatically

using a commercial triglyceride analysis kit (GPO-PAP 1488872,

Roche Diagnostics). Total cholesterol and choline-containing

phospholipids (PC, lyso-PC, SM) were measured for the same

tissue specimens from the solvent phase after initial chloroform–

methanol extraction, using the enzymatic assays specified above

for plasma lipids.

Western Blotting
Tissues or peritoneal macrophages were homogenized in

50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 1%

NP-40, 0.25% Na-deoxycholate, 1% SDS, protease inhibitor

cocktail (Roche Diagnostics). After protein determination with the

Pierce (Dallas, TX) BCA assay, protein specimens were boiled for

5 min in reducing Laemmli loading buffer. Similarly, HDL peak

fractions from plasma size-exclusion chromatography on Superose
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6 HR 10/30 were boiled in loading buffer. The specimens were

loaded on 10% homogeneous or 4–15% gradient SDS-poly-

acrylamide gels (BioRad, Hercules, CA). The separated proteins

were electrotransferred onto Hybond-C nitrocellulose membranes

(GE Healthcare/Amersham, Buckinghamshire, UK). Unspecific

binding of antibodies was blocked with 5% (w/v) fat-free milk in

10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween-20.

Primary antibodies diluted in the same buffer were incubated

overnight at +4uC, and the bound antibodies were detected using

peroxidase conjugated secondary IgGs (Jackson Immunoresearch,

West Grove, PA), followed by visualization with SuperSignal West

Pico chemiluminescence substrate (Pierce) and densitometric

quantification normalized using the b-actin signal. The rabbit

ORP8 antibodies used were described by Yan et al. [10]. The

ABCA1 (NB400-105) and SR-B1 (NB400-101) antibodies were

from Novus Biologicals (Littleton, CO) and anti-b-actin (A2066)

from Sigma-Aldrich. The rabbit apoE antibody was described in

[45]. The apoA-II antibodies (K23400R) were from Biodesign

International (Memphis, TN) and apoC-III antibodies from Isis

Pharmaceuticals (Carlsbad, CA).

Immunohistochemistry
Immunohistochemical stainings of tissue paraffin sections were

performed using the rabbit ABCA1 and apoE antibodies specified

above, and rabbit anti-apoA-I (K23001R) from Meridian Life

Science (Memphis, TN). The primary antibodies were detected

using the avidin–biotin complex system (Vectastain ABC Elite

rabbit kit, Vector Laboratories, Burlingame, CA). Brown 3,39-

diamino-benzidine (DAB, Sigma-Aldrich), was used as chromo-

gen. Sections were counterstained with Mayer’s hematoxylin. The

stained samples were photographed with a digital camera

(DFC480, Leica, Wetzlar, Germany) attached to a Leica

DM4500B microscope. Specificity of the signals observed was

controlled for by carrying out similar stainings in the absence of

primary antibody, (data not shown).

Quantitative Real-time RT-PCR (qPCR)
Tissue total RNA was isolated by using the Pure Link RNA

MiniH kit (Ambion, Austin, TX) and reverse transcribed with

Superscript IIIH (Invitrogen, Carlsbad, CA). qPCR was carried out

on a Roche Lightcycler 480 II instrument by using the SYBR

Green master mix from Roche, with primers specified in Table S1.

The ribosomal protein 36B4 mRNA was used as a reference

housekeeping message. Relative mRNA quantities were calculated

by using the DDCT method.

HDL Catabolism
HDL (1.0 mg of protein) purified from C57Bl/6 mouse plasma

by ultracentrifugation in KBr, density 1.063–1.21 g/ml [46] was

labeled with the Alexa FluorH568 Protein Labeling Kit (A10238;

Molecular Probes, Eugene, OR), followed by purification of the

labeled particles on a Superose 6 HR 10/30 column (GE

Healthcare). The HDL (40 mg protein/animal) was injected into

the tail vein of chow-fed WT or ORP8 KO mice, followed by

blood sampling into EDTA tubes at 5 min, 30 min, 2 h, 4 h, and

8 h post-injection. After 24 h the mice were terminated with CO2

and blood was collected through heart puncture. Plasma was

separated as above, and fluorescence in specimens diluted 1/20

with PBS was determined by using the PHERAstar fluorometer

(BMG Labtech, Germany). After the tail vein injection (5 min,

4 h, and 4 h time points), we controlled the distribution of the

Alexa label in plasma by sixe exclusion chromatography as

described above. This analysis revealed that at all three time points

70–80% of the fluorescence localized in the HDL fractions (data

not shown).

Osbpl8 Silencing in Hepa1-6 Cells and Nascent HDL
Production
Osbpl8 was stably silenced in the mouse hepatoma cell line

Hepa1-6 (CRL-1830, American Type Culture Collection, Man-

assas, VA) by using an Osbpl8-specific Sigma-Aldrich shRNA

lentivirus TRCN 0000105248, as described in [13]. Non-Target

shRNA expressing lentivirus (SHC002V) was used as a control.

Nascent HDL Enrichment and ESI-MS Lipid Analysis
The Hepa1-6 cell pools cultured on 10 cm dishes in Dulbecco’s

Modified Eagle’s Medium (DMEM, Sigma-Aldrich), 10% foetal

bovine serum, penicillin/streptomycin, were washed twice with

PBS, and the medium was replaced with 10 ml of serum-free

medium/dish. The medium (20 ml/specimen) was collected after

24 h and, after centrifugation (10 min, 5006g), concentrated with

MicrosepTM centrifugal device using 10K molecular weight cut-off

ultrafiltration membrane according to the manufacturer’s instruc-

tions (Pall Life Sciences, Ann Arbor, MI), and fractioned on

a Superose 6 HR 10/30 column (GE Healthcare) as specified

above. Lipids in the fractions containing apoA-I (identified by

Western analysis) were extracted by using the Folch protocol [44]

and analyzed by electrospray ionization mass spectrometry (ESI-

MS) as described in [47].

Supporting Information

Figure S1 Immunohistochemical staining of ABCA1 in
representative sections of Osbpl8KO and wild-type (WT)
mouse liver.
(TIF)

Figure S2 Immunohistochemical staining of apoA-I in
representative sections of Osbpl8KO and wild-type (WT)
mouse liver.
(TIF)

Figure S3 Immunohistochemical staining of apoE in
representative sections of Osbpl8 and wild-type (WT)
mouse liver.
(TIF)

Table S1 Oligonucleotide primers used for mRNA
quantification by quantitative real-time reverse tran-
scription-PCR.
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Table S2 Body weight of the WT and Osbpl8KO mice
before (n=12) and after (n=6) the diets.
(DOCX)
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