221 research outputs found

    What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles?

    Get PDF
    The formation and growth of atmospheric particles involving sulfuric acid and organic vapors is estimated to have significant climate effects. To accurately represent this process in large-scale models, the correct interpretation of the observations on particle growth, especially below 10 nm, is essential. Here, we disentangle the factors governing the growth of sub-10 nm particles in the presence of sulfuric acid and organic vapors, using molecular-resolution cluster population simulations and chamber experiments. We find that observed particle growth rates are determined by the combined effects of (1) the concentrations and evaporation rates of the condensing vapors, (2) particle population dynamics, and (3) stochastic fluctuations, characteristic to initial nucleation. This leads to a different size-dependency of growth rate in the presence of sulfuric acid and/or organic vapors at different concentrations. Specifically, the activation type behavior, resulting in growth rate increasing with the particle size, is observed only at certain vapor concentrations. In our model simulations, cluster-cluster collisions enhance growth rate at high vapor concentrations and their importance is dictated by the cluster evaporation rates, which demonstrates the need for accurate evaporation rate data. Finally, we show that at sizes below similar to 2.5-3.5 nm, stochastic effects can importantly contribute to particle population growth. Overall, our results suggest that interpreting particle growth observations with approaches neglecting population dynamics and stochastics, such as with single particle growth models, can lead to the wrong conclusions on the properties of condensing vapors and particle growth mechanisms.Peer reviewe

    Asynchronous responses of aquatic ecosystems to hydroclimatic forcing on the Tibetan Plateau

    Get PDF
    High-altitude ecosystems react sensitively to hydroclimatic triggers. Here we evaluated the ecological and hydrological changes in a glacier-influenced lake (Hala Hu, China) since the last glacial. Rapid fluctuations of aquatic biomarker concentrations, ratios, and hydrogen isotope values, from 15 to 14,000 and 8 to 5000 years before present, provided evidence for aquatic regime shifts and changes in lake hydrology. In contrast, most negative hydrogen isotope values of terrestrial biomarkers were observed between 9 and 7,000 years before present. This shows that shifts of vapour sources and increased precipitation amounts were not relevant drivers behind ecosystem changes in the studied lake. Instead, receding glaciers and increased meltwater discharge, driven by higher temperatures, caused the pronounced ecological responses. The shifts within phytoplankton communities in the Late Glacial and mid Holocene illustrate the vulnerability of comparable ecosystems to climatic and hydrological changes. This is relevant to assess future ecological responses to global warming

    The contribution of new particle formation and subsequent growth to haze formation

    Get PDF
    We investigated the contribution of atmospheric new particle formation (NPF) and subsequent growth of the newly formed particles, characterized by high concentrations of fine particulate matter (PM2.5). In addition to having adverse effects on visibility and human health, these haze particles may act as cloud condensation nuclei, having potentially large influences on clouds and precipitation. Using atmospheric observations performed in 2019 in Beijing, a polluted megacity in China, we showed that the variability of growth rates (GR) of particles originating from NPF depend only weakly on low-volatile vapor - highly oxidated organic molecules (HOMs) and sulphuric acid - concentrations and have no apparent connection with the strength of NPF or the level of background pollution. We then constrained aerosol dynamic model simulations with these observations. We showed that under conditions typical for the Beijing atmosphere, NPF is capable of contributing with more than 100 mu g m(-3) to the PM2.5 mass concentration and simultaneously >10(3) cm(-3) to the haze particle (diameter > 100 nm) number concentration. Our simulations reveal that the PM2.5 mass concentration originating from NPF, strength of NPF, particle growth rate and pre-existing background particle population are all connected with each other. Concerning the PM pollution control, our results indicate that reducing primary particle emissions might not result in an effective enough decrease in total PM2.5 mass concentrations until a reduction in emissions of precursor compounds for NPF and subsequent particle growth is imposed.Peer reviewe

    Assessment of particle size magnifier inversion methods to obtain the particle size distribution from atmospheric measurements

    Get PDF
    Accurate measurements of the size distribution of atmospheric aerosol nanoparticles are essential to build an understanding of new particle formation and growth. This is particularly crucial at the sub-3 nm range due to the growth of newly formed nanoparticles. The challenge in recovering the size distribution is due its complexity and the fact that not many instruments currently measure at this size range. In this study, we used the particle size magnifier (PSM) to measure atmospheric aerosols. Each day was classified into one of the following three event types: a new particle formation (NPF) event, a non-event or a haze event. We then compared four inversion methods (stepwise, kernel, Hagen-Alofs and expectation-maximization) to determine their feasibility to recover the particle size distribution. In addition, we proposed a method to pretreat the measured data, and we introduced a simple test to estimate the efficacy of the inversion itself. Results showed that all four methods inverted NPF events well; however, the stepwise and kernel methods fared poorly when inverting non-events or haze events. This was due to their algorithm and the fact that, when encountering noisy data (e.g. air mass fluctuations or low sub-3 nm particle concentrations) and under the influence of larger particles, these methods overestimated the size distribution and reported artificial particles during inversion. Therefore, using a statistical hypothesis test to discard noisy scans prior to inversion is an important first step toward achieving a good size distribution. After inversion, it is ideal to compare the integrated concentration to the raw estimate (i.e. the concentration difference at the lowest supersaturation and the highest supersaturation) to ascertain whether the inversion itself is sound. Finally, based on the analysis of the inversion methods, we provide procedures and codes related to the PSM data inversion.Peer reviewe

    Formation and growth of sub-3-nm aerosol particles in experimental chambers

    Get PDF
    Atmospheric new particle formation (NPF), which is observed in many environments globally, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, which affect both the climate and human health. To better understand the mechanisms behind NPF, chamber experiments can be used to simulate this phenomenon under well-controlled conditions. Recent advancements in instrumentation have made it possible to directly detect the first steps of NPF of molecular clusters (similar to 1-2 nm in diameter) and to calculate quantities such as the formation and growth rates of these clusters. Whereas previous studies reported particle formation rates as the flux of particles across a specified particle diameter or calculated them from measurements of larger particle sizes, this protocol outlines methods to directly quantify particle dynamics for cluster sizes. Here, we describe the instrumentation and analysis methods needed to quantify particle dynamics during NPF of sub-3-nm aerosol particles in chamber experiments. The methods described in this protocol can be used to make results from different chamber experiments comparable. The experimental setup, collection and post-processing of the data, and thus completion of this protocol, take from months up to years, depending on the chamber facility, experimental plan and level of expertise. Use of this protocol requires engineering capabilities and expertise in data analysis.Peer reviewe

    Observations of biogenic ion-induced cluster formation in the atmosphere

    Get PDF
    A substantial fraction of aerosols, which affect air quality and climate, is formed from gaseous precursors. Highly oxygenated organic molecules (HOMs) are essential to grow the newly formed particles and have been evidenced to initiate ion-induced nucleation in chamber experiments in the absence of sulfuric acid. We investigate this phenomenon in the real atmosphere using an extensive set of state-of-the-art ion and mass spectrometers deployed in a boreal forest environment. We show that within a few hours around sunset, HOMs resulting from the oxidation of monoterpenes are capable of forming and growing ion clusters even under low sulfuric acid levels. In these conditions, we hypothesize that the lack of photochemistry and essential vapors prevents the organic clusters from growing past 6 nm. However, this phenomenon might have been a major source of particles in the preindustrial atmosphere and might also contribute to particle formation in the future and consequently affect the climate.Peer reviewe

    Measurement report : New particle formation characteristics at an urban and a mountain station in northern China

    Get PDF
    Atmospheric new particle formation (NPF) events have attracted increasing attention for their contribution to the global aerosol number budget and therefore their effects on climate, air quality and human health. NPF events are regarded as a regional phenomenon, occurring over a large area. Most observations of NPF events in Beijing and its vicinity were conducted in populated areas, whereas observations of NPF events on mountaintops with low anthropogenic emissions are still rare in China. The spatial variation of NPF event intensity has not been investigated in detail by incorporating both urban areas and mountain measurements in Beijing. Here, we provide NPF event characteristics in summer 2018 and 2019 at urban Beijing and a comparison of NPF event characteristics - NPF event frequency, formation rate and growth rate - by comparing an urban Beijing site and a background mountain site separated by similar to 80 km from 14 June to 14 July 2019, as well as giving insights into the connection between both locations. During parallel measurements at urban Beijing and mountain background areas, although the median condensation sink during the first 2 h of the common NPF events was around 0.015(-1) at both sites, there were notable differences in formation rates between the two locations (median of 5.42 cm(-3) s(-1) at the urban site and 1.13 cm(-3) s(-1) at the mountain site during the first 2 h of common NPF events). In addition, the growth rates in the 7-15 nm range for common NPF events at the urban site (median of 7.6 nm h(-1)) were slightly higher than those at the mountain site (median of 6.5 nm h(-1)). To understand whether the observed events were connected, we compared air mass trajectories as well as meteorological conditions at both stations. Favorable conditions for the occurrence of regional NPF events were largely affected by air mass transport. Overall, our results demonstrate a clear inhomogeneity of regional NPF within a distance of similar to 100 km, possibly due to the discretely distributed emission sources.Peer reviewe

    Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing

    Get PDF
    Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.Peer reviewe

    Size-resolved particle number emissions in Beijing determined from measured particle size distributions

    Get PDF
    The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.Peer reviewe

    Quiet New Particle Formation in the Atmosphere

    Get PDF
    Atmospheric new particle formation (NPF) has been observed to take place in practice all around the world. In continental locations, typically about 10-40% of the days are so-called NPF event days characterized by a clear particle formation and growth that continue for several hours, occurring mostly during daytime. The other days are either non-event days, or days for which it is difficult to decide whether NPF had occurred or not. Using measurement data from several locations (Hyytiala, Jarvselja, and near-city background and city center of Budapest), we were able to show that NPF tends to occur also on the days traditionally characterized as non-event days. One explanation is the instrument sensitivity towards low number concentrations in the sub-10 nm range, which usually limits our capability to detect such NPF events. We found that during such days, particle formation rates at 6 nm were about 2-20% of those observed during the traditional NPF event days. Growth rates of the newly formed particles were very similar between the traditional NPF event and non-event days. This previously overlooked phenomenon, termed as quiet NPF, contributes significantly to the production of secondary particles in the atmosphere.Peer reviewe
    corecore