24 research outputs found

    Quantifying mechanistic traits of influenza viral dynamics using in vitro data.

    Get PDF
    When analysing in vitro data, growth kinetics of influenza virus strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mathematical models for epidemics, the growth rate can be defined as a function of mechanistic traits: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Fitting a model to previously published and newly generated data from experiments in human lung cells, we compared estimates of growth rate, reproduction number and generation time for six influenza A strains. Of four strains in previously published data, A/Canada/RV733/2003 (seasonal H1N1) had the lowest basic reproduction number, followed by A/Mexico/INDRE4487/2009 (pandemic H1N1), then A/Indonesia/05/2005 (spill-over H5N1) and A/Anhui/1/2013 (spill-over H7N9). This ordering of strains was preserved for both generation time and growth rate, suggesting a positive biological correlation between these quantities which have not been previously observed. We further investigated these potential correlations using data from reassortant viruses with different internal proteins (from A/England/195/2009 (pandemic H1N1) and A/Turkey/05/2005 (H5N1)), and the same surface proteins (from A/Puerto Rico/8/34 (lab-adapted H1N1)). Similar correlations between traits were observed for these viruses, confirming our initial findings and suggesting that these patterns were related to the degree of human adaptation of internal genes. Also, the model predicted that strains with a smaller basic reproduction number, shorter generation time and slower growth rate underwent more replication cycles by the time of peak viral load, potentially accumulating mutations more quickly. These results illustrate the utility of mathematical models in inferring traits driving observed differences in in vitro growth of influenza strains

    Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types.

    Get PDF
    We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants

    Estimating internationally imported cases during the early COVID-19 pandemic

    Get PDF
    Early in the COVID-19 pandemic, predictions of international outbreaks were largely based on imported cases from Wuhan, China, potentially missing imports from other cities. We provide a method, combining daily COVID-19 prevalence and flight passenger volume, to estimate importations from 18 Chinese cities to 43 international destinations, including 26 in Africa. Global case importations from China in early January came primarily from Wuhan, but the inferred source shifted to other cities in mid-February, especially for importations to African destinations. We estimate that 10.4 (6.2 - 27.1) COVID-19 cases were imported to these African destinations, which exhibited marked variation in their magnitude and main sources of importation. We estimate that 90% of imported cases arrived between 17 January and 7 February, prior to the first case detections. Our results highlight the dynamic role of source locations, which can help focus surveillance and response efforts

    On the role of CD8(+) T cells in determining recovery time from influenza virus infection

    Get PDF
    Myriad experiments have identified an important role for CD8+ T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behavior in a single coherent framework. Here, we introduce a mathematical model of influenza viral dynamics incorporating innate, humoral, and cellular immune components and explore its properties with a particular emphasis on the role of cellular immunity. Calibrated against a range of murine data, our model is capable of recapitulating observed viral kinetics from a multitude of experiments. Importantly, the model predicts a robust exponential relationship between the level of effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find support for this relationship in recent clinical data from influenza A (H7N9) hospitalized patients. The exponential relationship implies that people with a lower level of naive CD8+ T cells may receive significantly more benefit from induction of additional effector CD8+ T cells arising from immunological memory, itself established through either previous viral infection or T cell-based vaccines

    KIR-HLA interactions extend human CD8+ T cell lifespan in vivo

    Get PDF
    BACKGROUND. There is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell–mediated control of chronic viral infection and that these results are consistent with an increase in the CD8+ T cell lifespan due to iKIR-ligand interactions. Here, we tested this prediction and investigated whether iKIRs affect T cell lifespan in humans in vivo. METHODS. We used stable isotope labeling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections. RESULTS. We showed that an individual’s iKIR-ligand genotype was a significant determinant of CD8+ T cell lifespan: in individuals with 2 iKIR-ligand gene pairs, memory CD8+ T cells survived, on average, for 125 days; in individuals with 4 iKIR-ligand gene pairs, the memory CD8+ T cell lifespan doubled to 250 days. Additionally, we showed that this survival advantage was independent of iKIR expression by the T cell of interest and, further, that the iKIR-ligand genotype altered the CD8+ and CD4+ T cell immune aging phenotype. CONCLUSIONS. Together, these data reveal an unexpectedly large effect of iKIR genotype on T cell survival

    Localizing triplet periodicity in DNA and cDNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protein-coding regions (coding exons) of a DNA sequence exhibit a triplet periodicity (TP) due to fact that coding exons contain a series of three nucleotide codons that encode specific amino acid residues. Such periodicity is usually not observed in introns and intergenic regions. If a DNA sequence is divided into small segments and a Fourier Transform is applied on each segment, a strong peak at frequency 1/3 is typically observed in the Fourier spectrum of coding segments, but not in non-coding regions. This property has been used in identifying the locations of protein-coding genes in unannotated sequence. The method is fast and requires no training. However, the need to compute the Fourier Transform across a segment (window) of arbitrary size affects the accuracy with which one can localize TP boundaries. Here, we report a technique that provides higher-resolution identification of these boundaries, and use the technique to explore the biological correlates of TP regions in the genome of the model organism <it>C. elegans</it>.</p> <p>Results</p> <p>Using both simulated TP signals and the real <it>C. elegans </it>sequence F56F11 as an example, we demonstrate that, (1) Modified Wavelet Transform (MWT) can better define the boundary of TP region than the conventional Short Time Fourier Transform (STFT); (2) The scale parameter (a) of MWT determines the precision of TP boundary localization: bigger values of a give sharper TP boundaries but result in a lower signal to noise ratio; (3) RNA splicing sites have weaker TP signals than coding region; (4) TP signals in coding region can be destroyed or recovered by frame-shift mutations; (5) 6 bp periodicities in introns and intergenic region can generate false positive signals and it can be removed with 6 bp MWT.</p> <p>Conclusions</p> <p>MWT can provide more precise TP boundaries than STFT and the boundaries can be further refined by bigger scale MWT. Subtraction of 6 bp periodicity signals reduces the number of false positives. Experimentally-introduced frame-shift mutations help recover TP signal that have been lost by possible ancient frame-shifts. More importantly, TP signal has the potential to be used to detect the splice junctions in fully spliced mRNA sequence.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Sequential infection experiments for quantifying innate and adaptive immunity during influenza infection

    Get PDF
    Laboratory models are often used to understand the interaction of related pathogens via host immunity. For example, recent experiments where ferrets were exposed to two influenza strains within a short period of time have shown how the effects of cross-immunity vary with the time between exposures and the specific strains used. On the other hand, studies of the workings of different arms of the immune response, and their relative importance, typically use experiments involving a single infection. However, inferring the relative importance of different immune components from this type of data is challenging. Using simulations and mathematical modelling, here we investigate whether the sequential infection experiment design can be used not only to determine immune components contributing to cross-protection, but also to gain insight into the immune response during a single infection. We show that virological data from sequential infection experiments can be used to accurately extract the timing and extent of cross-protection. Moreover, the broad immune components responsible for such cross-protection can be determined. Such data can also be used to infer the timing and strength of some immune components in controlling a primary infection, even in the absence of serological data. By contrast, single infection data cannot be used to reliably recover this information. Hence, sequential infection data enhances our understanding of the mechanisms underlying the control and resolution of infection, and generates new insight into how previous exposure influences the time course of a subsequent infection

    Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens

    Get PDF
    BACKGROUND: In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as the ongoing high global mortality from well-known airborne diseases such as tuberculosis and measles, there is an urgent need for practical ways of identifying congregate spaces where low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in particular may be high risk, due to the presence of both infectious and susceptible people. While relatively simple approaches to estimating ventilation rates exist, the approaches most frequently used in epidemiology cannot be used where occupancy varies, and so cannot be reliably applied in many of the types of spaces where they are most needed. METHODS: The aim of this study was to demonstrate the use of a non-steady state method to estimate the absolute ventilation rate, which can be applied in rooms where occupancy levels vary. We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by age), taken over time. Two approaches were compared: approach 1 using a simple linear regression model and approach 2 using an ordinary differential equation model. RESULTS: The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632-3181] and Q from approach 2 was 2743 l/s [95% CI: 2139-4429]. CONCLUSIONS: We demonstrate two methods that can be used to estimate ventilation rate in busy congregate settings, such as clinic waiting rooms. Both approaches produced comparable results, however the simple linear regression method has the advantage of not requiring room volume measurements. These methods can be used to identify poorly-ventilated spaces, allowing measures to be taken to reduce the airborne transmission of pathogens such as Mycobacterium tuberculosis, measles, and SARS-CoV-2

    Deterministic electron ptychography at atomic resolution

    No full text
    We present a fast deterministic approach to the ptychographic reconstruction of the transmission function of a specimen at atomic resolution. The method is demonstrated using a data set obtained from a cerium dioxide nanoparticle using an aberration-corrected electron microscope and is compared to established approaches to ptychography. The method is based on the solution of an overdetermined set of linear equations, and is computationally efficient and robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least squares method implemented using fast Fourier transforms. © 2014 American Physical Society
    corecore