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A B S T R A C T

When analysing in vitro data, growth kinetics of influenza virus strains are often compared by computing their
growth rates, which are sometimes used as proxies for fitness. However, analogous to mathematical models for
epidemics, the growth rate can be defined as a function of mechanistic traits: the basic reproduction number
(the average number of cells each infected cell infects) and the mean generation time (the average length
of a replication cycle). Fitting a model to previously published and newly generated data from experiments
in human lung cells, we compared estimates of growth rate, reproduction number and generation time for
six influenza A strains. Of four strains in previously published data, A/Canada/RV733/2003 (seasonal H1N1)
had the lowest basic reproduction number, followed by A/Mexico/INDRE4487/2009 (pandemic H1N1), then
A/Indonesia/05/2005 (spill-over H5N1) and A/Anhui/1/2013 (spill-over H7N9). This ordering of strains was
preserved for both generation time and growth rate, suggesting a positive biological correlation between
these quantities which have not been previously observed. We further investigated these potential correlations
using data from reassortant viruses with different internal proteins (from A/England/195/2009 (pandemic
H1N1) and A/Turkey/05/2005 (H5N1)), and the same surface proteins (from A/Puerto Rico/8/34 (lab-adapted
H1N1)). Similar correlations between traits were observed for these viruses, confirming our initial findings and
suggesting that these patterns were related to the degree of human adaptation of internal genes. Also, the model
predicted that strains with a smaller basic reproduction number, shorter generation time and slower growth
rate underwent more replication cycles by the time of peak viral load, potentially accumulating mutations
more quickly. These results illustrate the utility of mathematical models in inferring traits driving observed
differences in in vitro growth of influenza strains.
1. Introduction

The initial growth rate is often directly interpreted in studies of
virus evolution as a measure of in vitro or within-host fitness (Sanjuán,
010; Lyons and Lauring, 2018). In epidemiological studies, the initial
rowth rate can be expressed as a function of two parameters: the
asic reproduction number and the mean generation time (Nishiura
t al., 2010; Wallinga and Lipsitch, 2007). Each of these concepts can
lso be applied to the in vitro or within-host context, but only the
rowth rate is commonly used in experimental virology to characterise
n vitro/within-host growth kinetics.

The basic reproduction number in an epidemiological context is
he mean number of secondary infections due to an initial infected

∗ Corresponding author.

individual in an otherwise susceptible population. The cellular-level
equivalent is the mean number of secondary infected cells due to an
initial infected cell in an otherwise susceptible cell population. Studies
have estimated the basic cellular reproduction number for different
pathogens, such as HIV/SHIV (Nowak and Bangham, 1996; Iwami
et al., 2012, 2015; Iwanami et al., 2017), influenza A virus (Möhler
et al., 2005; Baccam et al., 2006) and rotavirus (González-Parra et al.,
2018). A limited number of these studies have directly compared the
basic reproduction number between different influenza or SHIV strains,
as a measure of relative fitness (Mitchell et al., 2011; Iwanami et al.,
2017; Farrukee et al., 2018).
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In an epidemiological context, the generation time is the time
between infection of an individual and infection of a secondary case.
The cellular-level equivalent is the time between infection of a cell and
infection of a secondary cell. Since a single cell will infect many sec-
ondary cells, this time varies between pairs of primary and secondary
infected cells. A useful summary statistic for the distribution of these
times is the mean generation time averaged over all secondary cells, in
an otherwise susceptible cell population. The mean generation time is
an important parameter in models of pathogen evolution (Russell et al.,
2012; Fonville, 2015; Illingworth, 2015; Nené et al., 2018; Geoghegan
et al., 2016; Reperant et al., 2015). In the context of HIV, a mean
generation time on the order of days has been linked to the rapid
evolution of drug resistance, necessitating combination antiretroviral
therapy (Perelson et al., 1996). Although mechanistic models have been
used to quantify the mean generation time for HIV (Perelson et al.,
1996; Iwami et al., 2015; Althaus et al., 2009; Dixit et al., 2004), the
effects of between-strain differences on the dynamics of infection and
evolution are not well studied.

This study aims to highlight the utility of the basic reproduction
number and mean generation time in addition to the initial growth
rate in considering the dynamics of an acute infection. We find that
strains with a small basic reproduction number also tend to have a
short mean generation time and a slow initial growth rate, a biological
correlation which has not previously been observed. We then use
simulations to show the impact of these parameters on the number of
replication rounds leading up to peak shedding; slower initial growth
rates lead to a greater proportion of virions that were the product of
several replication rounds. We anticipate that strain differences in the
number of replication cycles changes the accumulation rate of multiple
mutations within a single infection, with consequences for the pace of
virus evolution.

2. Methods

2.1. Strains with wild-type HA and NA

We re-analysed data published by Simon et al. (2016). In brief,
A/Canada/RV733/2003 (sH1N1-WT), A/Mexico/INDRE4487/2009
(pH1N1-WT), A/Indonesia/05/2005 (H5N1-WT) and A/Anhui/1/2013
(H7N9-WT) stocks were grown in MDCK cells. Single-cycle and multi-
cycle experiments were carried out in triplicate in A549 human lung
carcinoma cells in T25 flasks. Cells were infected at multiplicity of
infection (MOI) = 3 and MOI = 0.01 for the single-cycle and multi-cycle
experiments respectively, for an incubation period of 1 h at 37 ◦C. For
the single-cycle experiment, the cells were washed with an acidic saline
wash after the incubation period. At set time points, 0.5 mL of the 10
mL supernatant volume was harvested and replaced with 0.5 mL of
fresh media. A mock-yield experiment was also performed in triplicate,
where 107 plaque forming units (pfu) of each strain was left to decay in
cell-free media incubated at 37 ◦C. Infectious virus was quantified using
a TCID50 assay, and for the single-cycle and multi-cycle experiments,
total virus was quantified using qRT-PCR.

2.2. Strains with A/Puerto Rico/8/34 (PR8) HA and NA

Human embryonic kidney (293T) (ATCC), human lung adenocarci-
noma epithelial cells (A549) (ATCC) and Madin–Darby canine kidney
(MDCK) cells (ATCC) cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, Invitrogen) supplemented with 10%
fetal calf serum, 1% non-essential amino acids and 1% penicillin–
streptomycin (5000 IU/mL; 5000 μL) at 37 ◦C and 5% CO2.

We generated two reverse genetics viruses (pH1N1-PR8 and H5N1-
PR8). In these viruses, the HA and NA genes were from the laboratory
adapted strain A/Puerto Rico/8/34 (PR8, H1N1), and the six remaining
gene segments were from either A/England/195/2009 (pH1N1) or
A/Turkey/05/2005 (H5N1). Eight poll plasmids encoding the indicated
2

virus segments and four helper expression plasmids encoding poly-
merase components and NP expressed by the pCAGGS vector were
transfected into 293T cells. After 24 h, the transfected 293T cells were
resuspended and co-cultured with MDCK cells. Virus stocks were thus
grown on MDCK cells using serum free DMEM supplemented with
1 μg/mL of TPCK trypsin (Worthington). Viruses were stored in −80 ◦C
nd titrated on MDCK cells by plaque assay to determine the dilution
equired to achieve a given multiplicity of infection.

All infection experiments were performed in triplicate (three wells
n the same plate). For the single-cycle and multi-cycle experiments,
549 cells were plated in a six-well plate (2.5 × 106 cells per well).
ne day after plating, medium was removed from cells and cells were
ashed twice with PBS (3 mL/well), then covered with 500 μL serum-

ree DMEM medium. Cells were infected at MOI = 5 and MOI =
.01 for the single-cycle and multi-cycle experiments respectively; the
irus was thawed in a 37 ◦C water bath, then diluted with serum-
ree DMEM to a volume of 500 μL. After an incubation period of one
our, the inoculum was removed, cells were washed four times with
mL serum-free DMEM, and 3 mL serum-free DMEM with 1 μg/mL

PCK-treated trypsin was added to each well (without cells). At each
easurement time (shown in Fig. 2), the plates were shaken and 300 μL

upernatant was collected, and replaced by 300 μL serum-free DMEM
ith 1 μg/mL TPCK-treated trypsin. The supernatant was frozen at
80 ◦C for later quantification. For the mock-yield experiments, 3
L of virus at concentration 107 pfu/mL was added to each well. At

ach measurement time, 300 μL supernatant was collected without
eplacement and frozen at −80 ◦C for later quantification.

Plaque assays were carried out in confluent monolayers of MDCK
ells in 12-well plates. 100 μL of each tenfold virus dilution was

applied to each cell and incubated for 1 h at 37 ◦C. The inoculum
was then removed, and the cells were overlaid with 0.6% agarose in
MEM including 1 μg/mL TPCK-treated trypsin and 0.3% bovine serum
albumin fraction V (Gibco). The cells were then incubated at 37 ◦C.
After 3 days, the agarose was removed and the cells stained with 1 mL
0.5% crystal violet.

2.3. Mathematical model

Our mechanistic model (Fig. 1) is formulated as a set of ordinary
differential equations:

𝑑𝑇
𝑑𝑡

= −𝛽𝑇𝑉𝑖𝑛𝑓 , (1a)
𝑑𝐿1
𝑑𝑡

= 𝛽𝑇𝑉𝑖𝑛𝑓 −
𝑛𝐿
𝜏𝐿

𝐿1, (1b)

𝑑𝐿𝑖
𝑑𝑡

=
𝑛𝐿
𝜏𝐿

(𝐿𝑖−1 − 𝐿𝑖), 𝑖 = 2,… , 𝑛𝐿, (1c)

𝑑𝐼1
𝑑𝑡

=
𝑛𝐿
𝜏𝐿

𝐿𝑛𝐿 −
𝑛𝐼
𝜏𝐼

𝐼1, (1d)

𝑑𝐼𝑗
𝑑𝑡

=
𝑛𝐼
𝜏𝐼

(𝐼𝑗−1 − 𝐼𝑗 ), 𝑗 = 2,… , 𝑛𝐼 , (1e)

𝑑𝑉𝑖𝑛𝑓
𝑑𝑡

= 𝑝𝑖𝑛𝑓
𝑛𝐼
∑

𝑗=1
𝐼𝑗 − 𝑐𝑖𝑛𝑓𝑉𝑖𝑛𝑓 − 𝛽𝑇𝑉𝑖𝑛𝑓 𝑛∕𝑆, (1f)

𝑑𝑉𝑅𝑁𝐴
𝑑𝑡

= 𝑝𝑅𝑁𝐴

𝑛𝐼
∑

𝑗=1
𝐼𝑗 − 𝑐𝑅𝑁𝐴𝑉𝑅𝑁𝐴 − 𝛽𝑇𝑉𝑅𝑁𝐴∕𝑆, (1g)

The model equations are based on the study by Simon et al. (2016)
with modifications to account for loss of virus due to entry into target
cells (Handel et al., 2007). The model structure was first used by Perel-
son et al. (1996) to model HIV infection, and first applied to influenza
infection by Baccam et al. (2006). It includes the following processes:

• infection of a target cell (𝑇 ) by infectious virus (𝑉 ) at rate 𝛽;
𝑖𝑛𝑓
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Fig. 1. (A) Viral dynamics model; (B) Model tracking generation number. Circles
indicate cell compartments, while squares denote virion compartments. Quotation
marks indicate that the waiting time between compartments is gamma-distributed
rather than exponentially distributed, and that the mean waiting time is the inverse of
the ‘rate’ given. (B) illustrates 𝑁 = 3 generations.

• an infected cell (𝐿) entering a state of virion production (𝐼 , where
𝜏𝐿 is the mean time spent in the latent period between infection
and the state of virion production);

• production of infectious and non-infectious virions (to be ex-
plained in further detail);

• death of infected cells (𝜏𝐼 is the mean time from entering the state
of virion production to death);

• loss of virus due to entry into target cells (𝑛 and 𝑆 are associated
conversion constants as detailed in the Supplementary Material);

• loss of infectivity of free infectious virions at rate 𝑐𝑖𝑛𝑓 ; and
• degradation of free total virions at rate 𝑐𝑅𝑁𝐴.

The infected cells pass through 𝑛𝐿 latent stages and 𝑛𝐼 infectious
tages, where the duration of each stage is exponentially distributed.
s a result, the latent and infectious periods are Erlang distributed,
s per previous studies (Pinilla et al., 2012; Beggs and Dobrovolny,
015; Petrie et al., 2013; Liao et al., 2016; Paradis et al., 2015; Beau-
hemin et al., 2017). Holder and Beauchemin (2011) showed that for
nfluenza, compared to exponentially distributed latent and infectious
eriods, normally distributed or lognormally distributed latent and
nfectious periods lead to better fits to single-cycle data. When the
hape parameter is much greater than 1, the Erlang distribution is
imilar in shape to the normal and lognormal distributions. Infectious
nd total (infectious plus non-infectious) viral load are represented by
𝑖𝑛𝑓 and 𝑉𝑅𝑁𝐴 respectively. They are produced from infected cells at
ates 𝑝𝑖𝑛𝑓 and 𝑝𝑅𝑁𝐴 respectively. We do not model time-dependent
ffects of the immune response. Model compartments and parameters
re summarised in Table 1.
3

1

Fig. 2. Model fits to experimental data. The infectious viral load for the WT strains
(A–C) and the strains with PR8 HA and NA (D–F). Fitted 95% credible intervals are
shown as shaded areas on top the data (triangles). The infectious viral load is shown
for (from top) the multi-cycle experiments, the single-cycle experiments and the mock-
yield experiments. Note that data points in (C) are plotted as jittered in the horizontal
direction to reduce overlap.

We do not observe 𝑉𝑅𝑁𝐴 for the strains with PR8 HA and NA, so
we omit the last equation for these strains.

Single-cycle, multi-cycle and mock-yield experiments can be simu-
lated using this model by changing the initial conditions. Single-cycle
and multi-cycle experiments start with a fixed number of target cells
𝑇0, and infectious and total virus at high (for single-cycle) or low (for
multi-cycle) values. Mock-yield experiments start with no target cells
and a large amount of infectious virus.

The basic reproduction number for this model is

𝑅0 =
𝛽𝑇0𝑝𝑖𝑛𝑓 𝜏𝐼

𝑐𝑖𝑛𝑓 + 𝛽𝑇0𝑛∕𝑆
; (2)

the mean generation time, which we consider in the context of a
ully susceptible population, is

𝐺 = 𝜏𝐿 +
𝑛𝐼 + 1
2𝑛𝐼

𝜏𝐼 +
1

𝑐 + 𝛽𝑇0𝑛∕𝑆
; (3)

nd the initial growth rate 𝑟 is computed by linearising around the
isease-free equilibrium [𝑇 , 𝐿𝑖, 𝐼𝑖, 𝑉𝑖𝑛𝑓 ] = [𝑇0, 0, 0, 0] (Nowak et al.,
997; Lee et al., 2009).
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Table 1
Compartment and parameter definitions.

Compartment/Parameter Definition Units

𝑇 Target cell cell
𝐿 Infected cell not yet producing virus cell
𝐼 Infected cell producing virus cell
𝑉𝑖𝑛𝑓 Infectious virus 𝑢𝑉 /mL (see note)
𝑉𝑅𝑁𝐴 Total virus RNA copy number/mL
𝛽 Rate at which virus infects cells 𝑢−1𝑉 mL h−1

𝑝𝑖𝑛𝑓 Infectious virus production rate 𝑢𝑉 /mL (cell−1) h−1

𝑝𝑅𝑁𝐴 Total virus production rate RNA copy number/mL (cell−1) h−1

𝑐𝑖𝑛𝑓 Rate of loss of infectivity of free virus h−1

𝑐𝑅𝑁𝐴 Viral RNA degradation rate h−1

𝜏𝐿 Mean latent period h
𝜏𝐼 Mean infectious period h
𝑛𝐿 Number of latent stages –
𝑛𝐼 Number of infectious stages –
𝑛 Amount of 𝑢𝑉 entering each cell upon infection 𝑢𝑉 /cell
𝑆 Supernatant volume mL

Note: The infectious virus unit 𝑢𝑉 is TCID50 for the WT experiments and pfu for the PR8 experiments.
T
o
𝐿

We model observation error as lognormal, with an observation
hreshold at low titres. Further details of the model are in the Supple-
entary Material.

.4. Parameter estimation

Parameters were estimated for each strain separately using an adap-
ive Metropolis–Hastings algorithm. For a given strain, parameters were
stimated using combined data from the multi-cycle, single-cycle and
ock yield experiments. For a given strain, these experiments share all
odel parameters except for the production rate of infectious virus 𝑝𝑖𝑛𝑓 ,

nd otherwise differ only in initial conditions. 𝑝𝑖𝑛𝑓 for the single-cycle
xperiments is modelled as lower (or equal to) that for the multi-cycle
xperiments, to account for decreased infectious viral production due
o the presence of defective interfering particles at a high multiplicity of
nfection (Simon et al., 2016). We do so by introducing two parameters
or virus production — 𝑝𝑖𝑛𝑓 ,𝑆𝐶 and 𝑝𝑖𝑛𝑓 ,𝑀𝐶 — and fitting both 𝑝𝑖𝑛𝑓 ,𝑀𝐶

and 𝑝𝑖𝑛𝑓 ,𝑆𝐶∕𝑝𝑖𝑛𝑓 ,𝑀𝐶 . 𝑝𝑖𝑛𝑓 ,𝑆𝐶∕𝑝𝑖𝑛𝑓 ,𝑀𝐶 is restricted to take values less than
1.

The viral RNA degradation rate, shape parameters of the latent
period and viral production period distributions, initial number of
target cells, supernatant volume and observation threshold were fixed.
All other parameter values, including initial conditions, were estimated.
A multi-dimensional uniform distribution was used as the prior, with
some parameters log-transformed. Tables showing the fixed parameter
values and the priors for the estimated parameters are included in the
Supplementary Material.

2.5. Statistical analysis

For each pair of viruses in the study, for each estimated parameter,
we computed the ratio of the virus-specific parameter values, and tested
for deviations of the ratio from 1. For each parameter, 𝑝-values for
each virus pair were computed by sampling with replacement from
each marginal posterior distribution, and letting 𝑞 be the proportion
of sampled pairs whose ratio exceeds 1. The 𝑝-value was then 𝑝 =
2(𝑚𝑖𝑛(𝑞, 1 − 𝑞)). The strains with wild-type HA and NA were only
compared to each other, and not to the strains with PR8 HA and NA.

2.6. Model with generation numbers

We extended our model to explicitly associate each virion and
infected cell with a generation number. The inoculum was denoted
virus generation 1, the cells infected by the inoculum denoted cell
generation 1, the infectious virions produced by those cells denoted
virus generation 2, and so forth. This model enables us to calculate the
4

proportion of virions from each generation at a given time. The model
with generations is illustrated in Fig. 1B for tracking 𝑁 = 3 generations;
the actual implementation tracks 20 generations. (Cells and virions
above generation 𝑁 are lumped into the generation 𝑁 compartments).

he bulk dynamics of the model remain the same, that is, the number
f cells in 𝐿 in Fig. 1A is equal to the sum of the numbers of cells in

1, 𝐿2 and 𝐿3 in Fig. 1B, and similarly for 𝐼 and 𝑉𝑖𝑛𝑓 . Model equations
are as follows:

𝑑𝑇
𝑑𝑡

= −𝛽𝑇
𝐺
∑

𝑔=1
𝑉𝑖𝑛𝑓 ,𝑔 , (4a)

𝑑𝐿1,𝑔

𝑑𝑡
= 𝛽𝑇𝑉𝑖𝑛𝑓 ,𝑔 −

𝑛𝐿
𝜏𝐿

𝐿1,𝑔 , 𝑔 = 1,… , 𝐺,

(4b)
𝑑𝐿𝑖,𝑔

𝑑𝑡
=

𝑛𝐿
𝜏𝐿

(𝐿𝑖−1,𝑔 − 𝐿𝑖,𝑔), 𝑖 = 2,… , 𝑛𝐿, 𝑔 = 1,… , 𝐺,

(4c)
𝑑𝐼1,𝑔
𝑑𝑡

=
𝑛𝐿
𝜏𝐿

𝐿𝑛𝐿 ,𝑔 −
𝑛𝐼
𝜏𝐼

𝐼1,𝑔 , 𝑔 = 1,… , 𝐺,

(4d)
𝑑𝐼𝑗,𝑔
𝑑𝑡

=
𝑛𝐼
𝜏𝐼

(𝐼𝑗−1,𝑔 − 𝐼𝑗,𝑔), 𝑗 = 2,… , 𝑛𝐼 , 𝑔 = 1,… , 𝐺,

(4e)
𝑑𝑉𝑖𝑛𝑓 ,1
𝑑𝑡

= −𝑐𝑖𝑛𝑓𝑉𝑖𝑛𝑓 ,1 − 𝛽𝑇𝑉𝑖𝑛𝑓 ,1𝑛∕𝑆, (4f)

𝑑𝑉𝑖𝑛𝑓 ,𝑔
𝑑𝑡

= 𝑝𝑖𝑛𝑓
𝑛𝐼
∑

𝑗=1
𝐼𝑗,𝑔−1 − 𝑐𝑖𝑛𝑓𝑉𝑖𝑛𝑓 ,𝑔

− 𝛽𝑇𝑉𝑖𝑛𝑓 ,𝑔𝑛∕𝑆, 𝑔 = 2,… , 𝐺 − 1,
(4g)

𝑑𝑉𝑖𝑛𝑓 ,𝐺
𝑑𝑡

= 𝑝𝑖𝑛𝑓
𝑛𝐼
∑

𝑗=1
(𝐼𝑗,𝐺−1 + 𝐼𝑖,𝐺) − 𝑐𝑖𝑛𝑓𝑉𝑖𝑛𝑓 ,𝐺

− 𝛽𝑇𝑉𝑖𝑛𝑓 ,𝐺𝑛∕𝑆. (4h)

Here, 𝑔 denotes the generation number, and 𝐺 is the maximum number
of generations tracked, which is capped for computational purposes at
𝐺 = 20. We solve the equations for the maximum likelihood parameters
for a given strain, using multi-cycle initial conditions, to determine the
peak viral load and infectious virion distribution at that time.

Data and code to reproduce all results can be found at https://
github.com/ada-w-yan/cellularfluparams.

https://github.com/ada-w-yan/cellularfluparams
https://github.com/ada-w-yan/cellularfluparams
https://github.com/ada-w-yan/cellularfluparams
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3. Results

We estimated model parameters for the four influenza A strains
with wild-type HA and NA. The model accurately captured key fea-
tures of the viral load (Fig. 2). With a low inoculum (MOI = 0.01),
multiple generations of infection depleted the pool of susceptible cells
over a period of 6 days resulting in an infectious viral load curve
showing exponential growth, followed by a peak and exponential decay
(Fig. 2A). With a larger inoculum (MOI = 3), most cells were infected
immediately and the concentration of infectious virus plateaued earlier
(Fig. 2B). The loss of infectivity of free virus was captured by the mock-
yield assays where no cells were present (Fig. 2C). The model was also
able to reproduce the observed total viral load patterns as quantified
by qRT-PCR, although the viral load toward the end of the single-
cycle experiments was slightly underestimated for the sH1N1-WT and
pH1N1-WT strains (Fig. S1).

We hypothesise that our model cannot capture the continually
increasing ratio between total and infectious viral load because the
ratio between production rates of infectious and total virus is assumed
to be constant, and we have assumed that only infectious virus affects
infection dynamics. In reality, virus which is not measured by the
𝑇𝐶𝐼𝐷50 assay could be semi-infectious or defective interfering particles

the latter of which are more abundant in single-cycle compared to
ulti-cycle infections, complicating the relationship between infectious

nd total viral load. Our model also assumes that only one virus
an infect a cell; this assumption may not be true towards the end
f single-cycle infections as the multiplicity of infection gets higher,
nd could affect the model’s ability to explain the data. Investigating
his hypothesis by explicitly modelling the dynamics of semi-infectious
nd/or defective interfering particles, and modelling multiply–infected
ells is the subject of future work (see e.g. Liao et al. (2016), Koelle
t al. (2019)). We also note some variation in the estimated viral load
etween strains at 𝑡 = 0, despite the inoculum being the same between
trains in the experimental protocol. This is possibly due to differences
n inoculation efficiency which are not captured by our model, and we
llow initial conditions to vary between strains to compensate.

Fig. 2D–F show data for experiments conducted with pH1N1-PR8
nd H5N1-PR8, which were motivated by the analyses of the model
its to WT data in Figs. 3A–C. The model also fits these data well.

Supplementary Data S1 shows estimated model parameter values
nd the correlations between them.

From the estimated model parameters, we then calculated three
raits — the basic reproduction number, the mean generation time and
he initial growth rate for the four strains. We estimated the mean
eneration time to be between 25 and 65 h for the four WT strains,
anging from 32 h (median; 95% CI 27 h–40 h) for sH1N1-WT to 55 h
median; 95% CI 42 h–65 h) for H7N9-WT (Fig. 3A, left side of panel).
here appeared to be an increasing trend in mean generation time
rom the strain most adapted to humans (sH1N1-WT) to the strain least
dapted to humans (H7N9-WT). Strain differences were also observed
n the basic reproduction numbers and initial growth rates (Figs. 3B–C).
upplementary Data S2 shows the median and 95% credible intervals
lotted in Fig. 3. We note that combining data from three sets of experi-
ental conditions (multi-cycle, single-cycle and mock-yield) enabled us

o estimate these traits accurately. Fig. S2 shows that estimates using
ulti-cycle data only are less precise.

Fig. 3D further illustrates with a two-dimensional plot that strains
ith a high basic reproduction number also tended to have a long
ean generation time. The same initial growth rate can be achieved

ia two different routes: a high basic reproduction number and a long
ean generation time, or a low basic reproduction number and a short
ean generation time (Nishiura et al., 2010; Wallinga and Lipsitch,
007). High basic reproduction numbers and short mean generation
imes would lead to very high initial growth rates, while low basic
eproduction numbers and long mean generation times would lead
5

o very slow initial growth rates; these extreme values may not be
biologically plausible. Because the basic reproduction number and the
mean generation time are not completely independent, some types of
data do not enable independent estimation of both traits, such that
their marginal distributions are not well-constrained (Nishiura et al.,
2010). This was not the case for our data. For each strain, there was
indeed some correlation in the posterior distribution between the basic
reproduction number and the mean generation time (Fig. S3; see also
the diagonally stretched posterior distributions in Fig. 3D). Despite
this correlation, the marginal distributions were still well-constrained,
enabling differences to be seen between the estimated values for each
strain (Figs. 3A–B, D).

We then investigated whether one of these three traits alone (the ba-
sic reproduction number, mean generation time and initial growth rate)
could capture the observed differences between strains. We found that
each trait summarised changes in a different set of infection processes,
and thus offers a complementary perspective on viral dynamics. Fig. S4
shows the sensitivity of each trait to changes in the rates of underlying
model parameters. For example, the leftmost bar shows the percentage
change in the mean generation time for sH1N1-WT, if the infectivity
of virions 𝛽 were changed to that of H7N9-WT. We see that the basic
reproduction number was mostly affected by changes in the mean
infectious period 𝜏𝐼 and the infectivity 𝛽; the mean generation time
was mostly affected by changes in 𝜏𝐼 ; and the initial growth rate was
mostly affected by changes in 𝛽. Note that unlike the epidemiological
SIR model, the basic reproduction number, mean generation time and
initial growth rate in a viral dynamics model with latent period are
functions of up to five parameter combinations — 𝛽𝑇0, 𝑝𝑖𝑛𝑓 , 𝜏𝐿, 𝜏𝐼 , and
𝑐𝑖𝑛𝑓 + 𝛽𝑇0𝑛∕𝑆. As a result, the values of any two traits do not uniquely
determine the third.

We hypothesised that the differences between strains were driven
by the internal proteins. To test this hypothesis, we conducted the
same analysis on the pH1N1-PR8 and H5N1-PR8 data previously shown
in Fig. 2D–F. The mean generation time for H5N1-PR8 was longer
than that for pH1N1-PR8 (Fig. 3A, right side of panel). The median
estimate of the basic reproduction number was also higher for H5N1-
PR8 than pH1N1-PR8, although the difference was not statistically
significant (Fig. 3B). Nevertheless, a positive correlation between basic
reproduction number and mean generation time was observed (Fig. 3E),
consistent with our previous results. The initial growth rate did not
appear to be different between the strains (Fig. 3C), but the estimate for
H5N1-PR8 was imprecise because few observations were made during
the exponential growth phase of the multi-cycle experiment, as the
viral load plateaued earlier than expected (Fig. 2F). Note that we did
not compare the traits directly between pH1N1-WT and pH1N1-PR8,
or between H5N1-WT and H5N1-PR8, because our interest is in the
difference between the internal proteins of pH1N1 and H5N1, rather
than the changes introduced to each strain by changing their surface
proteins.

Simulations using the estimated parameters showed that by the peak
time of infection, strains with a smaller basic reproduction number,
shorter generation time and slower growth rate had a higher proportion
of virions with a large generation number, which we define as one plus
the number of replication cycles between the inoculum and the virion’s
production. The time of peak infectious viral load is of interest because
in an in vivo infection, transmission is most likely around the time of
peak viral load (Carrat et al., 2008). To perform these simulations, we
extended our model to associate each infectious virion and infected cell
with a generation number (see Methods). Fig. 4 shows the proportion
of virions in each generation at the time of peak infectious viral load,
according to the maximum likelihood parameter set for each strain,
under multi-cycle experiment conditions. For these values, among the
WT strains, sH1N1-WT had a higher proportion of virions with a high
generation number compared to pH1N1-WT, H5N1-WT and H7N9-
WT (Fig. 4A). pH1N1-PR8 also had a higher proportion of virions
with a high generation number compared to H5N1-PR8 (Fig. 4B). To

summarise this distribution, we calculated the mean generation number
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Fig. 3. Estimates for the mean generation time, basic reproduction number, and initial growth rate. (Top) The median and 95% credible intervals for (A) the mean generation
time, (B) basic reproduction number, and (C) initial growth rate, for the wild-type (WT) strains (left of each panel), and the strains with PR8 HA and NA (right). Calculation of
𝑝-values is described in the Methods. Statistically significant pairs are labelled (𝛼 = 0.05 with Bonferroni correction for seven pairwise tests per trait). Asterisks denote 𝑝 < 0.001.
Bottom) Contour plots of the posterior density of the mean generation time and the basic reproduction number for each strain, for (D) the WT strains, and (E) the strains with
R8 HA and NA. Fainter shading indicates lower support; dots indicate median values.
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t the time of peak infectious viral load. Calculating this statistic across
he joint posterior distribution confirmed that strains with a lower basic
eproduction number had a higher mean generation number, and thus
irions were on average a product of more replication cycles (Fig. 4C).

We investigated the hypothesis that longer generation times alone
ight be driving the difference in number of replication cycles at peak

iral shedding. However, we found that this was not the case. A sensi-
ivity analysis showed that out of the three traits, changing the initial
rowth rate had the largest effect on the generation number distribution
t the time of peak infectious viral load (Fig. 5). When we held the
ean generation time constant (Fig. 5A), we were able to achieve

ery different generation number distributions by varying the other
arameters. However, when we held the initial growth rate constant
Fig. 5C), varying the other parameters did not substantially change
he generation number distribution. Hence, the initial growth rate was
he main driver of the generation number distribution. Holding the
asic reproduction number constant while varying the other parameters
Fig. 5B) led to more variation in the generation number distribution
han when varying the generation time, but less than when varying the
nitial growth rate.

In Fig. 5, the traits were changed by varying 𝑝𝑖𝑛𝑓 and 𝜏𝐼 only.
To consider the effect of all model parameters, we conducted Latin
hypercube sampling of all model parameters across the 95% credible
intervals obtained by fitting the model to the data. We then calculated
the basic reproduction number, mean generation time initial growth
rate and mean generation number for these samples, and used partial
correlation coefficient analysis to determine the sensitivity of the mean
generation number to each of these traits. The results, shown in Fig. S5,
6

show that the mean generation number is most sensitive to the initial W
growth rate and least sensitive to the mean generation time, which is
consistent with Fig. 5. Details of the methods are in Section 4 of the
Supplementary Material.

We conducted a number of sensitivity analyses. We tested different
model structures to see the impacts of model assumptions on the esti-
mated values of traits. First, we ignored loss of free virions due to entry
into target cells (Supplementary Material). These changes only changed
estimated trait values slightly, and did not affect the relationship
between the three traits, human adaptation, and the generation number
distribution (Fig. S6). Second, we decreased the level of heterogeneity
in the generation time. We first decreased heterogeneity by narrowing
the distribution of the latent period and duration of virion production,
by setting 𝑛𝐿 = 𝑛𝐼 = 60 in the model equations. This change also did
ot affect the above relationships (Fig. S7).

We then decreased heterogeneity by changing the timing of pro-
uction of virions. In the model in the main text (Fig. 1, Eq. (1)),
nce each cell starts producing virus, it does so at a constant rate
ntil death. (Note that due to heterogeneity in infected cells’ lifetimes,
he bulk production rate of virions by many cells varies over time.)
n the other hand, models including intracellular processes predict an
ge-dependent production rate (Heldt et al., 2013). Fig. S8 shows the
iral load estimated using a model where the production rate of virions
ncreases over an infectious cell’s age of infection (Supplementary Ma-
erial). In this model, most virions are produced towards the end of an
nfected cell’s lifespan, so there is less heterogeneity in the generation
ime. This model predicts slightly different dynamics from the model in
he main text (Fig. 2). For the multi-cycle data, the new model predicts
sharp increase in viral load followed by a sharp decline for all strains.
he model in the main text predicted similar dynamics for sH1N1-

T, pH1N1-WT and pH1N1-PR8, but a gradual plateau in viral load
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Fig. 4. Simulated distribution of the number of virions in each generation, for the six experimental strains. (A–B) The proportion of virions in each generation was calculated at
the time of peak infectious viral load according to the maximum likelihood parameters for each strain, for (A) the WT strains, and (B) the strains with PR8 HA and NA. As visual
aids, lines join the number of virions at each discrete generation. (C) The mean generation number was calculated for each sample from the joint posterior distribution for each
strain. The median and 95% credible interval for the mean generation number are shown for the WT strains (left of each panel), and the strains with PR8 HA and NA (right).
Statistically significant pairs are labelled (𝛼 = 0.05 with Bonferroni correction for seven pairwise tests). Asterisks denote 𝑝 < 0.001.
Fig. 5. Simulated distribution of the number of virions in each generation, as values of traits are changed systematically. The proportion of virions in each generation (the
generation number distribution) was calculated at the time of peak infection. The traits in the legend were changed to the values shown. In each panel, one parameter is held
constant: the mean generation time 𝑇𝐺 (A), basic reproduction number 𝑅0 (B), or initial growth rate 𝑟 (C).
followed by a decrease for H5N1-WT, H7N9-WT and H5N1-PR8. This
difference can be seen by inspection of the data, and is missed by the
new model. For the single-cycle data, the new model produces ‘‘bumpy’’
curves with multiple stages of rapid viral growth, whereas the model
in the main text produces the sigmoidal curves characteristic of single-
cycle growth kinetics. Model predictions of the mock-yield viral load
have a different slope from the data, particularly for H5N1-PR8. We
hypothesise that in the new model, the slope of the multi-cycle viral
load during its decay phase is less driven by the infected cell lifespan
and more driven by the loss of virus infectivity; hence, the new model is
unable to explain strain differences in the multi-cycle viral load decay
rate without introducing artificial differences in the rate of loss of virus
infectivity. Due to these qualitative differences between the data and
the estimated viral load, we conclude that the model in the main text,
where the production rate is constant, is more appropriate.

Last, we removed heterogeneity in the generation time altogether,
which we hypothesised would change the relationship between the
three traits and the number of replication cycles by the time of peak
infectious viral load. We conducted this sensitivity analysis because
evolutionary models often assume a fixed generation time, such that
at a given time all virions belong to the same generation (Russell et al.,
2012; Geoghegan et al., 2016; Illingworth, 2015). Fig. S8 shows the
simulated generation number of virions at the time of peak infectious
viral load for a model with a fixed generation time; details are given
in the Supplementary Material. When we held the basic reproduction
number constant (panel B in Fig. S9), varying the other parameters did
not change the generation number, whereas when we held the gener-
ation time or the initial growth rate constant, we were able to change
the generation number by varying the other parameters. Hence, for
the fixed generation time model, only the basic reproduction number
influences the generation number at the time of peak viral load. This
7

drastically different result implies that quantitative predictions of the
number of mutations accumulated during the time course of infection
should account for heterogeneity in the generation time. This hetero-
geneity arises because virions are produced throughout the infectious
period of a cell, and the infected cell lifespan is itself highly heteroge-
neous (Holder and Beauchemin, 2011; Beauchemin et al., 2017). These
sources of heterogeneity are reflected in our model structure, and lead
to successive generations of virions overlapping in time rather than all
virions belonging to the same generation.

4. Discussion

By simultaneously estimating the basic reproduction number, the
mean generation time, and the initial growth rate for in vitro influenza
viral dynamics, our study has uncovered a novel positive correlation
between these traits across six influenza A strains. Strain differences in
the three traits were driven by changes in rates of different underlying
infection processes, such that each trait provides a different perspec-
tive. Some studies have directly compared model parameter values for
strains differing by a single mutation (Pinilla et al., 2012; Holder et al.,
2011; Petrie et al., 2015; Simon et al., 2016). Because mutations may
affect one or more infection processes captured by these parameters,
combining these processes into a smaller number of traits – the basic
reproduction number, mean generation time, and initial growth rate –
may enable easier between-strain comparisons.

As reviewed by Wargo and Kurath (2012), virological data analysis
protocols have mostly used the initial growth rate to measure in vitro
fitness, interpreting a larger growth rate as a fitness advantage. The
previous analysis of four of the strains presented here by Simon et al.
(2016) showed strain differences in the rate of infection, which is

closely related to the initial growth rate. A limited number of studies
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have computed the basic reproduction number, and fewer still have
compared it between virus strains (Mitchell et al., 2011; Iwanami et al.,
2017; Farrukee et al., 2018). Some modelling studies have computed
another related quantity, the infecting time, which is the time between
a cell starting to produce virus and infection of the first secondary
ell (Pinky and Dobrovolny, 2016; Paradis et al., 2015; Holder et al.,
011; Holder and Beauchemin, 2011; Pinilla et al., 2012; Petrie et al.,
013, 2015; Gonzàlez-Parra et al., 2018). The mean generation time
iffers from the infecting time because the mean generation time is
veraged over all secondary cells, and also includes the period before an
nfected cell starts producing virus. If cell and virion loss are assumed
o be negligible during early infection, then the initial growth rate is
nversely proportional to the sum of the infecting time and the latent
eriod before an infected cell produces virus.

The in vitro generation time has not previously been estimated for
nfluenza using mechanistic models. The time to half-maximum viral
oad in a single-cycle experiment has been used as a heuristic estimate
or the generation time by Nobusawa and Sato (2006), who estimated
he generation time to be 7.6 h for A/1/87 and 9.7 h for B/29/99

shorter than our estimates. However, the latter method depends
n reliably capturing the peak viral load, and is thus sensitive to
imepoints chosen; neglects loss of infectivity of infectious virus; and
eglects the time taken for the viral progeny to infect a second cell.
e propose that fitting mechanistic models to data is a more reliable
ethod of estimating the generation time.

The estimated basic reproduction numbers range from 102 to 104

n orders of magnitude. Previous in vitro studies have estimated the
basic reproduction number to range from 102 to 103 in orders of
magnitude (Mitchell et al., 2011; Pinilla et al., 2012; Paradis et al.,
2015), consistent with our work. In vivo studies have estimated lower
basic reproduction numbers of order 101 (Baccam et al., 2006). This
difference between in vitro and in vivo estimates could be due to true
iological differences in the basic reproduction number, due to differ-
nces between the structure of the respiratory tract and cell culture
such as the mucus layer inhibiting infection in the respiratory tract, or
reater spatial spread of the virus in the respiratory tract). They could
lso be due to innate and adaptive immunity curbing infection in vivo

at the later stages of infection, which is not accounted for by target-cell
limited models such as those by Baccam et al. (2006) — estimates using
these models may underestimate the basic reproduction number.

We observe that the strains in our study with a low basic repro-
duction number, short mean generation time and slow growth rate are
human-adapted (sH1N1-WT, pH1N1-WT and pH1N1-PR8), and those
with a high basic reproduction number, long mean generation time
and high growth rate (H5N1-WT, H7N9-WT and H5N1-PR8) are avian-
adapted. These results suggest that the basic reproduction number,
mean generation time and growth rate differ systematically between
human-adapted and avian-adapted influenza strains. This finding held
when virus surface proteins were standardised, suggesting that the
differences are driven by internal proteins. The main limitation of our
results with respect to this finding is that we have only assessed these
traits in six strains. We note that experiments for two of the strains
(pH1N1-PR8 and H5N1-PR8) were designed specifically to measure
these traits and test the hypotheses generated using data from the other
strains. Nonetheless, it would be desirable to repeat these experiments
for a wider panel of strains with the same surface proteins, to see
whether differences in traits still hold across more human-adapted and
avian-adapted strains. If so, further investigation into the mechanisms
driving these differences could lead to new methods to quantify human
adaptation, to assess pandemic risk. Note that although the higher
initial growth rate could be interpreted as a fitness advantage for avian-
adapted strains in human cells, which is counterintuitive, in an in vivo
situation, the immune response must be considered in addition to the
initial growth rate. Moreover, the A549 cells used in these experiments
have a higher proportion of receptors expressing 𝛼2-3-linked sialic
8

acids compared to primary differentiated human airway epithelial cells,
which may confer an advantage to avian-adapted strains in this cell
type.

A previous study used primary normal human bronchial epithelial
cells as a model of the respiratory tract, and found that higher, not
lower, basic reproduction numbers were associated with human adap-
tation (Mitchell et al., 2011). Although this result appears to contradict
our findings, higher basic reproduction numbers for human-adapted
strains in primary normal human bronchial epithelial cells were likely
due to strain differences in receptor binding specificity, since these cells
primarily express 𝛼2,6-linked sialic acid receptors which are already
well understood to be favoured by human-adapted strains. In our
experiments where strains were engineered to have the same surface
proteins, we could eliminate the already-known effects of receptor
binding and isolate the effect of differences in internal proteins. If
considering the combined effect of internal and surface proteins in
wild-type strains, experimental conditions would need to more closely
mimic conditions in the respiratory tract, for example by using primary
differentiated human epithelial cells rather than the A549 cell line.

The same initial growth rate can be achieved with a small basic
reproduction number and short generation time, or a large basic re-
production number and long generation time (Nishiura et al., 2010;
Wallinga and Lipsitch, 2007). Correlation between the within-host
basic reproduction number and mean generation time was also seen
across patients in a previous study of HIV viral dynamics (Althaus et al.,
2009), although the correlation was not commented upon in that study.
The fact that some viruses have a small basic reproduction number
and short generation time, and others have a large basic reproduction
number and long generation time, suggests that these viruses may
have different replication strategies. The difference between human-
adapted and avian-adapted strains in this respect may reflect different
replication strategies in the human respiratory tract and the avian
gastrointestinal tract. To investigate this hypothesis, growth kinetics ex-
periments could be conducted for the same strains in human and avian
cell lines, and model parameter values could be compared between cell
lines. For example, if we found that free virions lost infectivity more
quickly in avian cell culture, a higher number of virions produced per
infected cell could compensate.

The second finding of our study was that strains with lower basic
reproduction numbers, shorter mean generation times and lower initial
growth rates tend to have a higher proportion of virions which are a
product of a large number of replication cycles at the time of peak
infection, when transmission is most likely to occur for the in vivo
case. Our analysis showed that the initial growth rate was the main
driver of changes in the mean generation number, and that correlations
between the basic reproduction number, mean generation time and
mean generation number mainly arise through correlations between the
initial growth rate, basic reproduction number, and mean generation
time. For a given mutation rate per replication cycle (as estimated
by Parvin et al. (1986) and Nobusawa and Sato (2006), this implies
quicker accumulation of mutations. The degree of heterogeneity in the
generation time also changed the generation number distribution. If we
unrealistically assumed no heterogeneity in the generation time, then
the generation number at the time of peak viral load depended entirely
on the basic reproduction number rather than the initial growth rate,
highlighting the importance of heterogeneity in the generation time in
evolutionary models.

A caveat of this second finding is that the relationship between the
generation number distribution and the initial growth rate would be
different in vivo due to a time-dependent immune response. However,
the overall finding that different parameter values lead to different
generation number distributions at a given time should still hold. Also,
in linking the accumulation of generations to accumulation of muta-
tions, we have assumed that the number of errors introduced between
primary and secondary virions is independent of when the secondary
virion was produced during the infected cell’s lifespan. However, the

number of errors introduced may increase with the age of the infected
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cell, since a virion exiting an ‘older’ cell may have been a product
of more intracellular replication and transcription cycles than a virion
exiting a ‘younger’ cell. In our model, we have not considered multiple
intracellular replication and transcription cycles before virus release.
However, the relationship between a cell’s age and the number of
mutations in produced virions is yet to be well understood.
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