104 research outputs found
Self-consistent model of unipolar transport in organic semiconductor diodes: accounting for a realistic density-of-states distribution
A self-consistent, mean-field model of charge-carrier injection and unipolar
transport in an organic semiconductor diode is developed utilizing the
effective transport energy concept and taking into account a realistic
density-of-states distribution as well as the presence of trap states in an
organic material. The consequences resulting from the model are discussed
exemplarily on the basis of an indium tin oxide/organic semiconductor/metallic
conductor structure. A comparison of the theory to experimental data of a
unipolar indium tin oxide/poly-3-hexyl-thiophene/Al device is presented.Comment: 6 pages, 2 figures; to be published in Journal of Applied Physic
Charge carrier injection into insulating media: single-particle versus mean-field approach
Self-consistent, mean-field description of charge injection into a dielectric
medium is modified to account for discreteness of charge carriers. The improved
scheme includes both the Schottky barrier lowering due to the individual image
charge and the barrier change due to the field penetration into the injecting
electrode that ensures validity of the model at both high and low injection
rates including the barrier dominated and the space-charge dominated regimes.
Comparison of the theory with experiment on an unipolar ITO/PPV/Au-device is
presented.Comment: 32 pages, 9 figures; revised version accepted to PR
Little-Parks effect and multiquanta vortices in a hybrid superconductor--ferromagnet system
Within the phenomenological Ginzburg-Landau theory we investigate the phase
diagram of a thin superconducting film with ferromagnetic nanoparticles. We
study the oscillatory dependence of the critical temperature on an external
magnetic field similar to the Little-Parks effect and formation of multiquantum
vortex structures. The structure of a superconducting state is studied both
analytically and numerically.Comment: 7 pages, 1 figure. Submitted to J. Phys.: Condens. Mat
Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation
The interaction between a superconducting vortex or antivortex in a
superconducting film and a magnetic dipole with in- or out-of-plane
magnetization is investigated within the London approximation. The dependence
of the interaction energy on the dipole-vortex distance and the film thickness
is studied and analytical results are obtained in limiting cases. We show how
the short range interaction with the magnetic dipole makes the co-existence of
vortices and antivortices possible. Different configurations with vortices and
antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.
Mathematical modelling and numerical simulation of CO2/CH4 separation in a polymeric membrane
YesCO2 capture from natural gas was experimentally and theoretically studied using a dead-end polymeric permeation cell. A numerical model was proposed for the separation of CO2/CH4 using Polytetrafluoroethylene (PTFE) in a flat sheet membrane module and developed based upon the continuity, momentum and mass transfer equations. The slip velocity condition was considered to show the reflection of gas flow in contact with the membrane surface. The solution method was based on the well-known SIMPLE algorithm and implemented using MATLAB to determine the velocity and concentration profiles. Due to change in velocity direction in the membrane module, the hybrid differencing scheme was used to solve the diffusion-convection equation. The results of the model were compared with the experimental data obtained as part of this work and good agreement was observed. The distribution of CO2 concentration inside the feed and permeate chambers was shown and the velocity profile at the membrane surface was also determined using reflection factor for polymericmembrane. The modelling result revealed that increasing the amount of CO2 in gas feed resulted in an increase in the CO2 in the permeate stream while the gas feed pressure increased. By changing the permeability, the model developed by use of the solution-diffusion concept could be used for all polymeric membranes with flat sheet modules
Nucleation of superconductivity and vortex matter in superconductor - ferromagnet hybrids
The theoretical and experimental results concerning the thermodynamical and
low-frequency transport properties of hybrid structures, consisting of
spatially-separated conventional low-temperature superconductor (S) and
ferromagnet (F), is reviewed. Since the superconducting and ferromagnetic parts
are assumed to be electrically insulated, no proximity effect is present and
thus the interaction between both subsystems is through their respective
magnetic stray fields. Depending on the temperature range and the value of the
external field H_{ext}, different behavior of such S/F hybrids is anticipated.
Rather close to the superconducting phase transition line, when the
superconducting state is only weakly developed, the magnetization of the
ferromagnet is solely determined by the magnetic history of the system and it
is not influenced by the field generated by the supercurrents. In contrast to
that, the nonuniform magnetic field pattern, induced by the ferromagnet,
strongly affect the nucleation of superconductivity leading to an exotic
dependence of the critical temperature T_{c} on H_{ext}. Deeper in the
superconducting state the effect of the screening currents cannot be neglected
anymore. In this region of the phase diagram various aspects of the interaction
between vortices and magnetic inhomogeneities are discussed. In the last
section we briefly summarize the physics of S/F hybrids when the magnetization
of the ferromagnet is no longer fixed but can change under the influence of the
superconducting currents. As a consequence, the superconductor and ferromagnet
become truly coupled and the equilibrium configuration of this "soft" S/F
hybrids requires rearrangements of both, superconducting and ferromagnetic
characteristics, as compared with "hard" S/F structures.Comment: Topical review, submitted to Supercond. Sci. Tech., 67 pages, 33
figures, 439 reference
Negative Magnetoresistance of Layered High-t Compounds
Magnetoresistance of layered high-T systems with quasi-two-dimensional superconductivity in magnetic field H applied parallel to superconducting planes was investigated theoretically. In such configuration an increase in the magnetic field intensity decreases the critical temperature of superconducting regions. It causes both a suppression of the gap parameter Δ and an increase in the tunneling current between the decoupled superconducting planes and, as a consequence, leads to negative magnetoresistance. The dependence of tunneling current on H was calculated for superconducting layer thickness d smaller than the superconducting correlation length. The results can be used for analysis of current-voltage characteristics of both superconductor-insulator-superconductor and superconductor-insulator normal metal multilayered tunnel structures
- …