37 research outputs found

    Pupil dynamics during very light exercise predict benefits to prefrontal cognition

    Get PDF
    軽運動の前頭前野機能向上効果は瞳に映る. 京都大学プレスリリース. 2023-07-12.Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V̇o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    DECIGO and DECIGO pathfinder

    Full text link

    Relationship between the Difference in Oxygenated Hemoglobin Concentration Changes in the Left and Right Prefrontal Cortex and Cognitive Function during Moderate-Intensity Aerobic Exercise

    No full text
    Previous studies have indicated that changes in oxygenated hemoglobin concentration (O2Hb) in the prefrontal cortex (PFC) are associated with changes in cognitive function. Therefore, the present study aimed to explore the effect of differences in O2Hb levels in the left and right PFC (L-PFC and R-PFC, respectively) on cognitive function after exercise. This study included 12 healthy male college students. The exercise regimen consisted of 4 min of warm-up and rest each, followed by 20 min of moderate-intensity exercise and 20 min of post-exercise rest. Participants underwent the 2-back cognitive test thrice (pre-exercise, post-exercise, and after the 20 min post-exercise rest period), and their reaction times were recorded. O2Hb levels in the PFC were monitored using functional near-infrared spectroscopy. We analyzed the correlations between changes in post-exercise reaction times and differences in peak O2Hb levels (L-PFC minus R-PFC), area under the curve for O2Hb changes, and increases in the O2Hb slope during exercise. Peak O2Hb, area under the curve (AUC) for O2Hb change, and increase in the slope of O2Hb were significantly correlated with changes in reaction time. These findings provide insight into the mechanism by which O2Hb differences between the L-PFC and R-PFC affect cognitive function

    Inter-individual differences in working memory improvement after acute mild and moderate aerobic exercise.

    No full text
    Many studies have shown that aerobic exercise improves cognitive function and maintains brain health. In particular, moderate-intensity exercise is effective for improving cognitive performance. However, there is no strong consensus on whether a single exercise session improves working memory (WM) function, as it does inhibitory function. It is possible that these discrepancies involve inter-individual differences in WM function. Therefore, we investigated whether acute mild and moderate aerobic exercise improve WM, and whether there exist inter-individual differences in improvements in WM. Thirty healthy subjects were recruited and participated in three experimental conditions (control, mild-intensity exercise, and moderate-intensity exercise). Subjects performed 10 min of exercise on a cycle ergometer with an individualized load. Their pedaling rate was maintained at 60 rpm. In the control condition, subjects rested on the cycle ergometer instead of performing exercise. The N-back task (2-back and 0-back task) was performed to assess WM function before, 5 min, and 15 min after the 10-min exercise session. In this study, to elucidate the effect of an acute bout of mild or moderate exercise on WM, the "2-back- 0-back" contrast, which is assumed to represent WM function, was calculated. The Two-Dimensional Mood Scale was adopted to measure changes in psychological mood states efficiently. The results revealed that working memory function was not improved by acute mild or moderate exercise. However, baseline working memory function was significantly associated with any change in working memory function following exercise, and this was independent of exercise intensity. Subjects with the lowest working memory function at baseline responded the most favorably. The results revealed that improvements in working memory function after a single session of aerobic exercise depend on baseline working memory function

    Data from: Water immersion decreases sympathetic skin response during color–word Stroop Test

    No full text
    Water immersion alters the autonomic nervous system (ANS) response in humans. The effect of water immersion on executive function and ANS responses related to executive function tasks was unknown. Therefore, this study aimed to determine whether water immersion alters ANS response during executive tasks. Fourteen healthy participants performed color–word-matching Stroop tasks before and after non-immersion and water immersion intervention for 15 min in separate sessions. The Stroop task-related skin conductance response (SCR) was measured during every task. In addition, the skin conductance level (SCL) and electrocardiograph signals were measured over the course of the experimental procedure. The main findings of the present study were as follows: 1) water immersion decreased the executive task-related sympathetic nervous response, but did not affect executive function as evaluated by Stroop tasks, and 2) decreased SCL induced by water immersion was maintained for at least 15 min after water immersion. In conclusion, the present results suggest that water immersion decreases the sympathetic skin response during the color–word Stroop test without altering executive performance
    corecore