571 research outputs found

    Combination of p53AIP1 and survivin expression is a powerful prognostic marker in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>p53AIP1 is a potential mediator of apoptosis depending on p53, which is mutated in many kinds of carcinoma. High survivin expression in non-small cell lung cancer is related with poor prognosis. To investigate the role of these genes in non-small cell lung cancer, we compared the relationship between p53AIP1 or survivin gene expression and the clinicopathological status of lung cancer.</p> <p>Materials and methods</p> <p>Forty-seven samples from non-small cell lung cancer patients were obtained between 1997 and 2003. For quantitative evaluation of RNA expression by PCR, we used Taqman PCR methods.</p> <p>Results</p> <p>Although no correlation between p53AIP1 or survivin gene expression and clinicopathological factors was found, the relationship between survivin gene expression and nodal status was significant (p = 0.03). Overall survival in the p53AIP1-negative group was significantly worse than in the positive group (p = 0.04); however, although survivin expression was not a prognostic factor, the combination of p53AIP1 and survivin was a significant prognostic predictor (p = 0.04). In the multivariate cox proportional hazard model, the combination was an independent predictor of overall survival (p53AIP1 (+) survivin (+), HR 0.21, 95%CI = [0.01โ€“1.66]; p53AIP1 (+) survivin (-), HR 0.01, 95%CI = [0.002โ€“0.28]; p53AIP1 (-) survivin (-), HR 0.01, 95%CI = [0.002โ€“3.1], against p53AIP1 (-) survivin (+), p = 0.03).</p> <p>Conclusion</p> <p>These data suggest that the combination of p53AIP1 and survivin gene expression may be a powerful tool to stratify subgroups with better or worse prognosis from the variable non-small cell lung cancer population.</p

    Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherinโˆ’ (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs

    Experimental and numerical investigations on the seismic behavior of bridge piers with vertical unbonded prestressing strands

    Get PDF
    In the performance-based seismic bridge design, piers are expected to undergo large inelastic deformations during severe earthquakes, which in turn can result in large residual drift and concrete crack in the bridge piers. In this paper, longitudinal unbonded prestressing strands are used to minimize residual drift and residual concrete crack width in reinforced concrete (RC) bridge piers. Seven pier specimens were designed and tested quasi-statically and the numerical simulations were carried out. The effectiveness of using vertical unbonded prestressing strands to mitigate the residual drift and concrete crack width of RC bridge piers are examined and discussed in detail. It is found that the residual drift and residual concrete crack width of the piers can be reduced significantly by using the prestressing strands. Moreover, the strands can increase the lateral strength of the piers while have little influence on the ductility capacity of the piers. The hysteretic curves, residual drifts and strand stress of the piers predicted by the numerical model agree well with the testing data and can be used to assess the cyclic behavior of the piers

    Augmentation of Neovascularizaiton in Hindlimb Ischemia by Combined Transplantation of Human Embryonic Stem Cells-Derived Endothelial and Mural Cells

    Get PDF
    BACKGROUND: We demonstrated that mouse embryonic stem (ES) cells-derived vascular endothelial growth factor receptor-2 (VEGF-R2) positive cells could differentiate into both endothelial cells (EC) and mural cells (MC), and termed them as vascular progenitor cells (VPC). Recently, we have established a method to expand monkey and human ES cells-derived VPC with the proper differentiation stage in a large quantity. Here we investigated the therapeutic potential of human VPC-derived EC and MC for vascular regeneration. METHODS AND RESULTS: After the expansion of human VPC-derived vascular cells, we transplanted these cells to nude mice with hindlimb ischemia. The blood flow recovery and capillary density in ischemic hindlimbs were significantly improved in human VPC-derived EC-transplanted mice, compared to human peripheral and umbilical cord blood-derived endothelial progenitor cells (pEPC and uEPC) transplanted mice. The combined transplantation of human VPC-derived EC and MC synergistically improved blood flow of ischemic hindlimbs remarkably, compared to the single cell transplantations. Transplanted VPC-derived vascular cells were effectively incorporated into host circulating vessels as EC and MC to maintain long-term vascular integrity. CONCLUSIONS: Our findings suggest that the combined transplantation of human ES cells-derived EC and MC can be used as a new promising strategy for therapeutic vascular regeneration in patients with tissue ischemia

    Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect <it>Mhc </it>(myosin heavy chain) gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche.</p> <p>Results</p> <p>The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and <it>Drosophila </it>have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of <it>Aedes aegypti </it>contains another and that of <it>Culex pipiens quinquefasciatus </it>two further muscle myosin heavy chain genes, called <it>Mhc3 </it>and <it>Mhc4</it>, that contain only one variant of the corresponding alternative exons of the <it>Mhc1 </it>gene. <it>Mhc3 </it>transcription in <it>Aedes aegypti </it>is documented by EST data. <it>Mhc3 </it>and <it>Mhc4 </it>inserted in the <it>Aedes </it>and <it>Culex </it>genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene.</p> <p>Conclusion</p> <p>Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for the splicing of other genes containing mutually exclusive exons.</p

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Improvement of Cardiac Function in Mouse Myocardial Infarction after Transplantation of Epigenetically-Modified Bone Marrow Progenitor Cells

    Get PDF
    OBJECTIVE: To study usefulness of bone marrow progenitor cells (BPCs) epigenetically altered by chromatin modifying agents in mediating heart repair after myocardial infarction in mice. METHODS AND RESULTS: We tested the therapeutic efficacy of bone marrow progenitor cells treated with the clinically-used chromatin modifying agents Trichostatin A (TSA, histone deacetylase inhibitor) and 5Aza-2-deoxycytidine (Aza, DNA methylation inhibitor) in a mouse model of acute myocardial infarction (AMI). Treatment of BPCs with Aza and TSA induced expression of pluripotent genes Oct4, Nanog, Sox2, and thereafter culturing these cells in defined cardiac myocyte-conditioned medium resulted in their differentiation into cardiomyocyte progenitors and subsequently into cardiac myocytes. Their transition was deduced by expression of repertoire of markers: Nkx2.5, GATA4, cardiotroponin T, cardiotroponin I, ฮฑ-sarcomeric actinin, Mef2c and MHC-ฮฑ. We observed that the modified BPCs had greater AceH3K9 expression and reduced histone deacetylase1 (HDAC1) and lysine-specific demethylase1 (LSD1) expression compared to untreated BPCs, characteristic of epigenetic changes. Intra-myocardial injection of modified BPCs after AMI in mice significantly improved left ventricular function. These changes were ascribed to differentiation of the injected cells into cardiomyocytes and endothelial cells. CONCLUSION: Treatment of BPCs with Aza and TSA converts BPCs into multipotent cells, which can then be differentiated into myocyte progenitors. Transplantation of these modified progenitor cells into infarcted mouse hearts improved left ventricular function secondary to differentiation of cells in the niche into myocytes and endothelial cells

    Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9(hi), SSEA-1(โˆ’) Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    Get PDF
    BACKGROUND: Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2)โ€Š=โ€Š0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(โˆ’) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(โˆ’) cells that constituted 1%โ€“10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2)โ€Š=โ€Š0.95) and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs
    • โ€ฆ
    corecore