3,686 research outputs found
Scaling and memory of intraday volatility return intervals in stock market
We study the return interval between price volatilities that are above
a certain threshold for 31 intraday datasets, including the Standard &
Poor's 500 index and the 30 stocks that form the Dow Jones Industrial index.
For different threshold , the probability density function
scales with the mean interval as
, similar to that found in daily
volatilities. Since the intraday records have significantly more data points
compared to the daily records, we could probe for much higher thresholds
and still obtain good statistics. We find that the scaling function is
consistent for all 31 intraday datasets in various time resolutions, and the
function is well approximated by the stretched exponential, , with and , which indicates the
existence of correlations. We analyze the conditional probability distribution
for following a certain interval , and find
depends on , which demonstrates memory in intraday
return intervals. Also, we find that the mean conditional interval
increases with , consistent with the memory found for
. Moreover, we find that return interval records have long
term correlations with correlation exponents similar to that of volatility
records.Comment: 19 pages, 8 figure
Diurnal experiment data report, 19-20 March 1974
Temperature and wind data are presented from 70 small meteorological sounding rockets launched from eight selected launch sites in the Western Hemisphere. Table 1 gives a complete listing of the launch sites involved and the altitude of temperature and wind observations successfully completed
A Generalized Preferential Attachment Model for Business Firms Growth Rates: II. Mathematical Treatment
We present a preferential attachment growth model to obtain the distribution
of number of units in the classes which may represent business firms
or other socio-economic entities. We found that is described in its
central part by a power law with an exponent which depends on
the probability of entry of new classes, . In a particular problem of city
population this distribution is equivalent to the well known Zipf law. In the
absence of the new classes entry, the distribution is exponential. Using
analytical form of and assuming proportional growth for units, we derive
, the distribution of business firm growth rates. The model predicts that
has a Laplacian cusp in the central part and asymptotic power-law tails
with an exponent . We test the analytical expressions derived using
heuristic arguments by simulations. The model might also explain the
size-variance relationship of the firm growth rates.Comment: 19 pages 6 figures Applications of Physics in Financial Analysis,
APFA
Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type
Calculations employing the local density approximation combined with static
and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the
metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room
temperature is not a Mott-Hubbard transition, but is caused by orbital
splitting of the majority-spin eg bands. For LaMnO3 to be insulating at
pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller
distortion are needed.Comment: 4 pages, 3 figure
Coherence of single spins coupled to a nuclear spin bath of varying density
The dynamics of single electron and nuclear spins in a diamond lattice with
different 13C nuclear spin concentration is investigated. It is shown that
coherent control of up to three individual nuclei in a dense nuclear spin
cluster is feasible. The free induction decays of nuclear spin Bell states and
single nuclear coherences among 13C nuclear spins are compared and analyzed.
Reduction of a free induction decay time T2* and a coherence time T2 upon
increase of nuclear spin concentration has been found. For diamond material
with depleted concentration of nuclear spin, T2* as long as 30 microseconds and
T2 of up to 1.8 ms for the electron spin has been observed. The 13C
concentration dependence of T2* is explained by Fermi contact and dipolar
interactions with nuclei in the lattice. It has been found that T2 decreases
approximately as 1/n, where n is 13C concentration, as expected for an electron
spin interacting with a nuclear spin bath.Comment: 4 pages, 4 figures, 1 movie (avi), 1 supplementary material (pdf
Recommended from our members
All-or-none (or something in between) transition of DNA
DNA compaction can be caused by multivalent ions as condensing agents. Both discontinuous (all-or-none) and continuous (pearl-necklace structure) transitions have been observed in experiments as the concentration of the condensing agent was increased. We have investigated the DNA transition by analytical calculations in the infinite-chain limit. A mechanism for pearl-necklace structures could be a combinatorial entropy term, which favours a mixture of globules and coils in a single chain. However, when a surface term is taken into account, it gives rise to a discontinuous transition. We also consider the role of surface charges on the globule
Ultrafast optical control of magnetization in EuO thin films
All-optical pump-probe detection of magnetization precession has been
performed for ferromagnetic EuO thin films at 10 K. We demonstrate that the
circularly-polarized light can be used to control the magnetization precession
on an ultrafast time scale. This takes place within the 100 fs duration of a
single laser pulse, through combined contribution from two nonthermal
photomagnetic effects, i.e., enhancement of the magnetization and an inverse
Faraday effect. From the magnetic field dependences of the frequency and the
Gilbert damping parameter, the intrinsic Gilbert damping coefficient is
evaluated to be {\alpha} \approx 3\times10^-3.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
Decomposição inicial da matéria orgânica e sua proteção em agregados de dois solos sob mata e cana-de-açúcar
bitstream/item/66204/1/32000.pdfFERTBIO
Collimated Jet or Expanding Outflow: Possible Origins of GRBs and X-Ray Flashes
We investigate the dynamics of an injected outflow propagating in a
progenitor in the context of the collapsar model for gamma-ray bursts (GRBs)
through two dimensional axisymmetric relativistic hydrodynamic simulations.
Initially, we locally inject an outflow near the center of a progenitor. We
calculate 25 models, in total, by fixing its total input energy to be 10^{51}
ergs s^{-1} and radius of the injected outflow to be cm while
varying its bulk Lorentz factor, , and its specific
internal energy, . The injected outflow propagates
in the progenitor and drives a large-scale outflow or jet. We find a smooth but
dramatic transition from a collimated jet to an expanding outflow among
calculated models. The maximum Lorentz factor is, on the other hand, sensitive
to both of and ; roughly . Our finding will explain a smooth transition between the
GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but
with different values.Comment: Comments 51 pages, 21 figures. accepted for publication in ApJ high
resolution version is available at
http://www.mpa-garching.mpg.de/~mizuta/COLLAPSAR/collapsar.htm
- …