Calculations employing the local density approximation combined with static
and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the
metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room
temperature is not a Mott-Hubbard transition, but is caused by orbital
splitting of the majority-spin eg bands. For LaMnO3 to be insulating at
pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller
distortion are needed.Comment: 4 pages, 3 figure