13 research outputs found

    Transcellular transport of West Nile virus-like particles across human endothelial cells depends on residues 156 and 159 of envelope protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West Nile virus (WNV) causes viremia after invasion to the hosts by mosquito bite. Endothelial cells could play an important role in WNV spread from the blood stream into the central nervous system and peripheral tissues. Here, we analyzed the capacity of virus-like particles (VLPs) of the highly virulent NY99 6-LP strain (6-LP VLPs) and the low virulence Eg101 strain (Eg VLPs) to cross cultured human endothelial cells.</p> <p>Results</p> <p>6-LP VLPs were transported from the apical to basolateral side of endothelial cells, whereas Eg VLPs were hardly transported. The localization of tight junction marker ZO-1 and the integrity of tight junctions were not impaired during the transport of 6-LP VLPs. The transport of 6-LP VLPs was inhibited by treatment with filipin, which prevents the formation of cholesterol-dependent membrane rafts, suggesting the involvement of raft-associated membrane transport. To determine the amino acid residues responsible for the transport of VLPs, we produced mutant VLPs, in which residues of E protein were exchanged between the 6-LP and Eg strains. Double amino acid substitution of the residues 156 and 159 greatly impaired the transport of VLPs.</p> <p>Conclusion</p> <p>Our results suggest that a transcellular pathway is associated with 6-LP VLPs transport. We also showed that the combination of the residues 156 and 159 plays an important role in the transport of VLPs across endothelial cells.</p

    A Randomized Phase 2 Trial of Antibiotic Prophylaxis Versus No Intervention for Muscle Biopsy in A Neurology Department

    Get PDF
    Muscle biopsy can be used to confirm the diagnosis of neuromuscular diseases. However, it is unclear whether antibiotic prophylaxis prior to muscle biopsy is needed to prevent surgical site infection (SSI). We are conducting a phase 2, single-center, open-labeled, prospective randomized trial to clarify the need for antibiotic prophylaxis in patients at low risk for SSI undergoing muscle biopsy. Patients will be randomized to an antibiotic prophylaxis group or a control group, and the incidence of SSI will be compared between the groups. Our findings will clarify the need for antibiotic prophylaxis in this patient population

    Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm

    Get PDF
    Rice (Oryza sativa) allelic sugary1 (sug1) mutants defective in isoamylase 1 (ISA1) accumulate varying levels of starch and phytoglycogen in their endosperm, and the activity of a pullulanase-type of a debranching enzyme (PUL) was found to correlate closely with the severity of the sug1 phenotype. Thus, three PUL-deficient mutants were generated to investigate the function of PUL in starch biosynthesis. The reduction of PUL activity had no pleiotropic effects on the other enzymes involved in starch biosynthesis. The short chains (DP ≤13) of amylopectin in PUL mutants were increased compared with that of the wild type, but the extent of the changes was much smaller than that of sug1 mutants. The α-glucan composition [amylose, amylopectin, water-soluble polysaccharide (WSP)] and the structure of the starch components (amylose and amylopectin) of the PUL mutants were essentially the same, although the average chain length of the B2-3 chains of amylopectin in the PUL mutant was ∼3 residues longer than that of the wild type. The double mutants between the PUL-null and mild sug1 mutants still retained starch in the outer layer of endosperm tissue, while the amounts of WSP and short chains (DP ≤7) of amylopectin were higher than those of the sug1 mutant; this indicates that the PUL function partially overlaps with that of ISA1 and its deficiency has a much smaller effect on the synthesis of amylopectin than ISA1 deficiency and the variation of the sug1 phenotype is not significantly dependent on the PUL activities
    corecore