5,653 research outputs found

    A perspective of Middle-Atmosphere Dynamics (MAD) studies at the New International Equatorial Observatory (NIEO)

    Get PDF
    The equatorial region has attracted many MAD studies mainly based on data of limited locations and resolutions. Established at NIEO are: (1) Climatology of the equatorial middle atmosphere (all of the mean zonal flow, the meridional and/or east-west circulations and the planetary/gravity waves are described based on massive, reliable data statistics); (2) Troposphere-stratosphere coupling at the equator (the candidate location of NIEO is just at the stratospheric fountain area where the tracers and waves are pumped up into the middle atmosphere); and (3) Mesosphere-thermosphere coupling at the equator; thermospheric superrotation, which may be caused either by ion drag or by tidal breaking, is examined in detail by observations covering a wide altitude range from the mesosphere through the thermosphere

    Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia

    No full text
    International audienceTemporal variations of precipitating clouds in equatorial Indonesia have been studied based on observations with 1357.5 MHz boundary layer radars at Serpong (6.4° S, 106.7° E) near Jakarta and Bukittinggi (0.2° S, 100.3° E) in West Sumatera. We have classified precipitating clouds into four types: stratiform, mixed stratiform-convective, deep convective, and shallow convective clouds, using the Williams et al. (1995) method. Diurnal variations of the occurrence of precipitating clouds at Serpong and Bukittinggi have showed the same characteristics, namely, that the precipitating clouds primarily occur in the afternoon and the peak of the stratiform cloud comes after the peak of the deep convective cloud. The time delay between the peaks of stratiform and deep convective clouds corresponds to the life cycle of the mesoscale convective system. The precipitating clouds which occur in the early morning at Serpong are dominated by stratiform cloud. Concerning seasonal variations of the precipitating clouds, we have found that the occurrence of the stratiform cloud is most frequent in the rainy season, while the occurrence of the deep convective cloud is predominant in the dry season

    Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season

    No full text
    International audienceA special observation campaign (X-BAIU), using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc.), was carried out in Kyushu (western Japan) during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m) was large (>1), and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband

    Structural Transition of Li2RuO3 Induced by Molecular-Orbit Formation

    Full text link
    A pseudo honeycomb system Li2RuO3 exhibits a second-order-like transition at temperature T=Tc=540 K to a low-T nonmagnetic phase with a significant lattice distortion forming Ru-Ru pairs. For this system, we have calculated the band structure, using the generalized gradient approximation (GGA) in both the high- and low- T phases, and found that the results of the calculation can naturally explain the insulating behavior observed in the low-T phase. The detailed characters of the Ru 4d t2g bands obtained by the tight-binding fit to the calculated dispersion curves show clear evidence that the structural transition is driven by the formation of the Ru-Ru molecular-orbits, as proposed in our previous experimental studies.Comment: 5 pages, 5 figures, 4 tables, submitted to J. Phys. Soc. Jp

    Ground State Properties of One Dimensional S=1/2 Heisenberg Model with Dimerization and Quadrumerization

    Full text link
    The one dimensional S=1/2 Heisenberg model with dimerization and quadrumerization is studied by means of the numerical exact diagonalization of finite size systems. Using the phenomenological renormalization group and finite size scaling law, the ground state phase diagram is obtained in the isotropic case. It exhibits a variety of the ground states which contains the S=1 Haldane state, S=1 dimer state and S=1/2 dimer state as limiting cases. The gap exponent ν\nu is also calculated which coincides with the value for the dimerization transition of the isotropic Heisenberg chain. In the XY limit, the phase diagram is obtained analytically and the comparison is made with the isotropic case.Comment: 4 pages, 7 figure

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Mott Transition in the Two-Dimensional Flux Phase

    Full text link
    Effects of the electron-electron interaction in the two-dimensional flux phase are investigated. We treat the half-filled Hubbard model with a magnetic flux π\pi per plaquette by the quantum Monte Carlo method. When the interaction is small, an antiferromagnetic long-range does not exist and the charge fluctuation is different from that of the Mott insulator It suggests that the Mott transition occurs at finite strength of the interaction in the flux phase, which is in contrast to the standard Hubbard model.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Phase Diagrams of S=3/2, 2 XXZ Spin Chains with Bond-Alternation

    Full text link
    We study the phase diagram of S=3/2 and S=2 bond-alternating spin chains numerically. In previous papers, the phase diagram of S=1 XXZ spin chain with bond-alternation was shown to reflect the hidden Z2×Z2Z_{2}\times Z_{2} symmetry. But for the higher S Heisenberg spin chain, the successive dimerization transition occurs, and for anisotropic spin chains the phase structure will be more colorful than the S=1 case. Using recently developed methods, we show directly that the phase structure of the anisotropic spin chains relates to the Z2×Z2Z_{2}\times Z_{2} symmetry.Comment: 13 pages, 6 figures(eps), RevTe

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
    corecore