47 research outputs found

    Method for evaluating material viscoelasticity

    Get PDF
    A method for evaluating the viscoelasticity of materials under oscillation load is proposed. In the method, a material under test is connected to a mass, which generates an oscillating inertial force after the mass is manually struck using a hammer. A pneumatic linear bearing is used to realize linear motion with sufficiently small friction acting on the mass that is the moving part of the bearing. The inertial force acting on the mass is determined highly accurately by means of measuring the velocity of the mass using an optical interferometer

    Method for evaluating material viscoelasticity

    Full text link

    Tomographic Image Reconstruction Based on Minimization of Symmetrized Kullback-Leibler Divergence

    Get PDF
    Iterative reconstruction (IR) algorithms based on the principle of optimization are known for producing better reconstructed images in computed tomography. In this paper, we present an IR algorithm based on minimizing a symmetrized Kullback-Leibler divergence (SKLD) that is called Jeffreys’ J-divergence. The SKLD with iterative steps is guaranteed to decrease in convergence monotonically using a continuous dynamical method for consistent inverse problems. Specifically, we construct an autonomous differential equation for which the proposed iterative formula gives a first-order numerical discretization and demonstrate the stability of a desired solution using Lyapunov’s theorem. We describe a hybrid Euler method combined with additive and multiplicative calculus for constructing an effective and robust discretization method, thereby enabling us to obtain an approximate solution to the differential equation.We performed experiments and found that the IR algorithm derived from the hybrid discretization achieved high performance

    欠損した投影の推定を伴う断層逆問題

    Get PDF
    Image reconstruction in computed tomography can be treated as an inverse problem, namely, obtaining pixel values of a tomographic image from measured projections. However, a seriously degraded image with artifacts is produced when a certain part of the projections is inaccurate or missing. A novel method for simultaneously obtaining a reconstructed image and an estimated projection by solving an initial-value problem of differential equations is proposed. A system of differential equations is constructed on the basis of optimizing a cost function of unknown variables for an image and a projection. Three systems described by nonlinear differential equations are constructed, and the stability of a set of equilibria corresponding to an optimized solution for each system is proved by using the Lyapunov stability theorem. To validate the theoretical result given by the proposed method, metal artifact reduction was numerically performed

    Noise-Robust Image Reconstruction Based on Minimizing Extended Class of Power-Divergence Measures

    Get PDF
    The problem of tomographic image reconstruction can be reduced to an optimization problem of finding unknown pixel values subject to minimizing the difference between the measured and forward projections. Iterative image reconstruction algorithms provide significant improvements over transform methods in computed tomography. In this paper, we present an extended class of power-divergence measures (PDMs), which includes a large set of distance and relative entropy measures, and propose an iterative reconstruction algorithm based on the extended PDM (EPDM) as an objective function for the optimization strategy. For this purpose, we introduce a system of nonlinear differential equations whose Lyapunov function is equivalent to the EPDM. Then, we derive an iterative formula by multiplicative discretization of the continuous-time system. Since the parameterized EPDM family includes the Kullback–Leibler divergence, the resulting iterative algorithm is a natural extension of the maximum-likelihood expectation-maximization (MLEM) method. We conducted image reconstruction experiments using noisy projection data and found that the proposed algorithm outperformed MLEM and could reconstruct high-quality images that were robust to measured noise by properly selecting parameters

    Block-Iterative Reconstruction from Dynamically Selected Sparse Projection Views Using Extended Power-Divergence Measure

    Get PDF
    Iterative reconstruction of density pixel images from measured projections in computed tomography has attracted considerable attention. The ordered-subsets algorithm is an acceleration scheme that uses subsets of projections in a previously decided order. Several methods have been proposed to improve the convergence rate by permuting the order of the projections. However, they do not incorporate object information, such as shape, into the selection process. We propose a block-iterative reconstruction from sparse projection views with the dynamic selection of subsets based on an estimating function constructed by an extended power-divergence measure for decreasing the objective function as much as possible. We give a unified proposition for the inequality related to the difference between objective functions caused by one iteration as the theoretical basis of the proposed optimization strategy. Through the theory and numerical experiments, we show that nonuniform and sparse use of projection views leads to a reconstruction of higher-quality images and that an ordered subset is not the most effective for block-iterative reconstruction. The two-parameter class of extended power-divergence measures is the key to estimating an effective decrease in the objective function and plays a significant role in constructing a robust algorithm against noise

    コンピュータ断層のための加速化OS-EMアルゴリズムに対応した連続時間系

    Get PDF
    The maximum-likelihood expectation-maximization (ML-EM) algorithm is used for an iterative image reconstruction (IIR) method and performs well with respect to the inverse problem as cross-entropy minimization in computed tomography. For accelerating the convergence rate of the ML-EM, the ordered-subsets expectation-maximization (OS-EM) with a power factor is effective. In this paper, we propose a continuous analog to the power-based accelerated OS-EM algorithm. The continuous-time image reconstruction (CIR) system is described by nonlinear differential equations with piecewise smooth vector fields by a cyclic switching process. A numerical discretization of the differential equation by using the geometric multiplicative first-order expansion of the nonlinear vector field leads to an exact equivalent iterative formula of the power-based OS-EM. The convergence of nonnegatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem for consistent inverse problems. We illustrate through numerical experiments that the convergence characteristics of the continuous system have the highest quality compared with that of discretization methods. We clarify how important the discretization method approximates the solution of the CIR to design a better IIR method

    バイナリ・トモグラフィのための連続時間画像再構成

    Get PDF
    Binary tomography is the process of reconstructing a binary image from a finite number of projections. We present a novel method for solving binary tomographic inverse problems using a continuous-time image reconstruction (CIR) system described by nonlinear differential equations based on the minimization of a double Kullback- Leibler divergence. We prove theoretically that the divergence measure monotonically decreases in time. Moreover, we demonstrate numerically that the quality of the reconstructed images of the nonlinear CIR system is better than those from an iterative reconstruction method

    Rice immediately adapts the dynamics of photosynthates translocation to roots in response to changes in soil water environment

    Get PDF
    Rice is susceptible to abiotic stresses such as drought stress. To enhance drought resistance, elucidating the mechanisms by which rice plants adapt to intermittent drought stress that may occur in the field is an important requirement. Roots are directly exposed to changes in the soil water condition, and their responses to these environmental changes are driven by photosynthates. To visualize the distribution of photosynthates in the root system of rice plants under drought stress and recovery from drought stress, we combined X-ray computed tomography (CT) with open type positron emission tomography (OpenPET) and positron-emitting tracer imaging system (PETIS) with 11C tracer. The short half-life of 11C (20.39 min) allowed us to perform multiple experiments using the same plant, and thus photosynthate translocation was visualized as the same plant was subjected to drought stress and then re-irrigation for recovery. The results revealed that when soil is drier, 11C-photosynthates mainly translocated to the seminal roots, likely to promote elongation of the root with the aim of accessing water stored in the lower soil layers. The photosynthates translocation to seminal roots immediately stopped after rewatering then increased significantly in crown roots. We suggest that when rice plant experiencing drought is re-irrigated from the bottom of pot, the destination of 11C-photosynthates translocation immediately switches from seminal root to crown roots. We reveal that rice roots are responsive to changes in soil water conditions and that rice plants differentially adapts the dynamics of photosynthates translocation to crown roots and seminal roots depending on soil conditions

    HTVL‐1キャリアへの免疫抑制療法中に発症したATLL

    Get PDF
    A 64-year-old woman presented with lower leg edema, fever, and bilateral joint pain, involving the wrists, fingers, and knees, in April 201X. Serological test results were negative for rheumatoid factor, antinuclear antibody, and anti-cyclic citrullinated peptide antibody. A diagnosis of remitting seronegative symmetrical synovitis with pitting edema syndrome, a type of seronegative rheumatoid arthritis, was made and prednisolone was administered. The joint pain was refractory to prednisolone therapy. In February, 201X+2, the patient presented with right cervical lymphadenopathy. The CT scan revealed swelling of the cervical, axillary, and inguinal lymph nodes bilaterally and rapidly enlarged. In April, 18F-fluorodeoxyglucose PET/CT scan showed an abnormal collection in the enlarged lymph nodes. The patient subsequently developed hoarseness with dyspnea and attended our department. Blood test results showed high levels of lactate dehydrogenase (547U/L) and soluble interleukin‐2 receptor (34200 IU/L) and were positive for anti-human T-cell leukemia virus type1 (HTLV‐1) antibody. Biopsy of the right cervical lymph node showed proliferation of abnormal lymphoid cells positive for CD3, CD4, and CD25 and negative for CD7. Monoclonal integration of HTLV‐1 proviral DNA was detected in the lymph node. A diagnosis of adult T-cell leukemia/lymphoma (ATLL), lymphoma type was made. The pain involving multiple joints was attributed to HTLV‐1associated arthropathy. Immunosuppressive therapy for HTLV‐1 carrier status may have played a role in the development of ATLL
    corecore