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Iterative reconstruction (IR) algorithms based on the principle of optimization are known for producing better reconstructed
images in computed tomography. In this paper, we present an IR algorithm based on minimizing a symmetrized Kullback-
Leibler divergence (SKLD) that is called Jeffreys’ 𝐽-divergence. The SKLD with iterative steps is guaranteed to decrease in
convergence monotonically using a continuous dynamical method for consistent inverse problems. Specifically, we construct
an autonomous differential equation for which the proposed iterative formula gives a first-order numerical discretization and
demonstrate the stability of a desired solution using Lyapunov’s theorem. We describe a hybrid Euler method combined with
additive and multiplicative calculus for constructing an effective and robust discretization method, thereby enabling us to obtain
an approximate solution to the differential equation. We performed experiments and found that the IR algorithm derived from the
hybrid discretization achieved high performance.

1. Introduction

Various kinds of iterative reconstruction (IR) [1–4] algo-
rithms based on the principle of optimization are known for
producing better reconstructed images in computed tomog-
raphy (CT). In accordance with the base objective function,
each IR method has intrinsic properties in the quality of
images and in the convergence of iterative solutions. The
maximum-likelihood expectation-maximization (ML-EM)
[4] algorithm decreases the generalized Kullback-Leibler
(KL) divergence [5, 6] between the measured projection and
the forward projection along with the iteration. However,
the objective function, in which the multiplicative algebraic
reconstruction technique (MART) [7–10] forces a decrease in
the iterative process, is an alternative KL-divergence done by
exchanging themeasured and forward projections.Due to the
asymmetry of the KL-divergence, both objective functions
have generally different values.

In this paper, we present an IR algorithm based on
the minimization of a symmetrized KL-divergence (SKLD),

which is formulated using the mean of the two mutually
alternativeKL-divergences and is called Jeffreys’ 𝐽-divergence
[11, 12]. Because the base optimization function is a symmet-
ric premetric measure and it gives an upper bound of the
Jensen-Shannon divergence [13, 14], one can expect a better
performance while preserving good properties of ML-EM
andMART algorithms.The convergence to an exact solution
and themonotonic decreasing of the SKLDwith each iterative
step for a consistent inverse problem are guaranteed using
the approach of the continuous dynamical method [15–
20]. Specifically, we construct an autonomous differential
equation for which the proposed iterative formula gives a
first-order numerical discretization with some step size and
demonstrate the stability of an equilibrium in a continuous-
time system using Lyapunov’s stability theorem [21]. The
theory is extended to a case where the Lyapunov function can
be an 𝛼-skew 𝐽-divergence with a parameter 𝛼 ∈ [0, 1], which
is the SKLD when 𝛼 = 0.5.

We also propose a novel method for constructing an
effective and robust method in the discretization, thereby
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enabling us to obtain an approximate solution to the differ-
ential equation. That is, a hybrid Euler discretization com-
bined with additive and multiplicative calculus works well;
however, neither additive nor multiplicative Euler method
does.

We conducted experiments and found that the IR algo-
rithm derived from the hybrid Euler discretization of the
continuous-time dynamical system achieved high perfor-
mance.

2. ML-EM and MART Algorithms

The problem of image reconstruction frommeasured projec-
tions in CT is formulated as solving unknown variable 𝑥 ∈ 𝑅𝐽+
for pixel values such that

𝑦 = 𝐴𝑥 + 𝜎, (1)

where 𝑦 ∈ 𝑅𝐼++, 𝐴 ∈ 𝑅𝐼×𝐽+ , and 𝜎 ∈ 𝑅𝐼 represent the measured
projection, projection operator, and noise, respectively, with𝑅+ and𝑅++, respectively, denoting the sets of nonnegative and
positive real numbers. If the system𝑦 = 𝐴𝑥 has a nonnegative
solution, it is consistent; otherwise, it is inconsistent.

We introduce the following definitions and notations.The
variable denoted by the symbol𝜆𝑗 for 𝑗 = 1, 2, . . . , 𝐽 is defined
by

𝜆𝑗 fl ( 𝐼∑
𝑖=1

𝐴 𝑖𝑗)
−1

, (2)

where 𝐴 𝑖𝑗 is the element in the 𝑖th row and 𝑗th column of𝐴. The notations 𝑧𝑗 and 𝐴 𝑖 indicate the 𝑗th element and the𝑖th row vector of the vector 𝑧 and the matrix 𝐴, respectively.
The function KL(𝑝, 𝑞) of two nonnegative vectors 𝑝 and 𝑞
represents the generalized KL-divergence [5]:

KL (𝑝, 𝑞) = 𝐼∑
𝑖=1

𝑝𝑖 log 𝑝𝑖𝑞𝑖 + 𝑞𝑖 − 𝑝𝑖. (3)

Known methods of reconstructing tomographic images
in clinical CT are filtered back projection (FBP) as a
transform method and IR as an optimization process. KL-
divergence is a common measure for deriving IR algorithms,
and it plays an important role in accordance with the
axiom that minimizing the KL-divergence is equivalent to
maximizing the likelihood function that is considered suit-
able for reconstruction modeled with a probability distribu-
tion.The sequences {KL(𝑦, 𝐴𝑧(𝑛))}∞𝑛=0 and {KL(𝐴𝑧(𝑛), 𝑦)}∞𝑛=0
decrease for the respective iterative sequences {𝑧(𝑛)}∞𝑛=0 of the
ML-EM and the (simultaneous) MART algorithms defined
by

𝑧𝑗 (𝑛 + 1) = 𝑧𝑗 (𝑛) 𝜆𝑗 𝐼∑
𝑖=1

𝐴 𝑖𝑗 𝑦𝑖𝐴 𝑖𝑧 (𝑛) (4)

and

𝑧𝑗 (𝑛 + 1) = 𝑧𝑗 (𝑛) exp(𝜆𝑗 𝐼∑
𝑖=1

𝐴 𝑖𝑗 log 𝑦𝑖𝐴 𝑖𝑧 (𝑛)) (5)

for 𝑗 = 1, 2, . . . , 𝐽 with 𝑧(0) = 𝑥0 ∈ 𝑅𝐽++.

3. Proposed System

The IR algorithm proposed in this paper can be described
using the following difference equation.

𝑧𝑗 (𝑛 + 1) = 𝑧𝑗 (𝑛) (1 + 𝛿𝑓𝑗 (𝑧 (𝑛))) exp (𝛿𝑔𝑗 (𝑧 (𝑛))) , (6)

where 𝛿 > 0 is a parameter and where the functions 𝑓𝑗 and𝑔𝑗 are, respectively, defined by

𝑓𝑗 (𝑧 (𝑛)) = (1 − 𝛼) 𝜆𝑗 𝐼∑
𝑖=1

𝐴 𝑖𝑗 ( 𝑦𝑖𝐴 𝑖𝑧 (𝑛) − 1) (7)

and

𝑔𝑗 (𝑧 (𝑛)) = 𝛼𝜆𝑗 𝐼∑
𝑖=1

𝐴 𝑖𝑗 log 𝑦𝑖𝐴 𝑖𝑧 (𝑛) (8)

for 𝑗 = 1, 2, . . . , 𝐽, with 𝛼 ∈ [0, 1] and 𝑧(0) = 𝑥0 ∈ 𝑅𝐽++.
For investigating the dynamics of the difference system

in (6), we give its continuous analog described using the
differential equation:

𝑑𝑥𝑗 (𝑡)𝑑𝑡 = 𝜆𝑗𝑥𝑗 (𝑡) 𝐼∑
𝑖=1

𝐴 𝑖𝑗
⋅ ((1 − 𝛼) ( 𝑦𝑖𝐴 𝑖𝑥 (𝑡) − 1) + 𝛼 log

𝑦𝑖𝐴 𝑖𝑥 (𝑡))
(9)

for 𝑗 = 1, 2, . . . , 𝐽 and 𝑡 ≥ 0 with 𝑥(0) = 𝑥0 ∈ 𝑅𝐽++. The term
“continuous analog” means that a numerical discretization
of the differential equation is the same as the difference
equation. The idea is based on the approach for solving a
constrained tomographic inverse problem using nonlinear
dynamical methods [22–25].

3.1. Theoretical Analysis. The theoretical results on the
continuous-time system in (9) are given. First, we show that
a solution is possible to ensure positive values remain.

Proposition 1. If we choose an initial value 𝑥0 ∈ 𝑅𝐽++ for the
system in (9), the solution 𝜙(𝑡, 𝑥0) remains in the subspace 𝑅𝐽++
for all 𝑡 ≥ 0.
Proof. The vector field of the 𝑗th element of the system is
multiplied by 𝑥𝑗; therefore, the derivative 𝑑𝜙𝑗/𝑑𝑡 ≡ 0 holds
for any 𝑗 on the subspace 𝑥𝑗 ≡ 0, which means the subspace
is invariant and which means any flow cannot pass through
invariant subspace on the basis of the uniqueness property of
solutions to the initial value problem. Hence, the trajectory
emanating from the initial value in 𝑅++ behaves in the sub-
state space.

Let us define
𝐽𝛼 (𝑥) fl (1 − 𝛼)KL (𝑦, 𝐴𝑥) + 𝛼KL (𝐴𝑥, 𝑦)

= 𝐼∑
𝑖=1

(1 − 𝛼) (𝑦𝑖 log 𝑦𝑖𝐴 𝑖𝑥 + 𝐴 𝑖𝑥 − 𝑦𝑖)
+ 𝛼(𝐴 𝑖𝑥 log 𝐴 𝑖𝑥𝑦𝑖 + 𝑦𝑖 − 𝐴 𝑖𝑥)

(10)
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with 𝛼 in the interval [0, 1] as an 𝛼-skew 𝐽-divergence. The
function is essential for a premetric measure of difference
between𝑦 and𝐴𝑥 in accordancewith 𝐽𝛼(𝑥) ≥ 0 and 𝐽𝛼(𝑥) = 0
if and only if 𝑦 = 𝐴𝑥. When 𝛼 = 0.5, the divergence 𝐽𝛼
becomes a symmetrical form of KL-divergence by averaging
KL(𝑦, 𝐴𝑥) and KL(𝐴𝑥, 𝑦), which we abbreviate as SKLD.

Then, under the assumption that the inverse problem is
consistent, the following shows that the solution converges to
a desired equilibrium and that the nonnegative function 𝐽𝛼
monotonically decreases along solution trajectories.

Theorem 2. If a unique solution 𝑒 ∈ 𝑅𝐽++ exists to the system𝑦 = 𝐴𝑥, the equilibrium 𝑒 of the dynamical system in (9) with
any 𝛼 ∈ [0, 1] is asymptotically stable.

Proof. A Lyapunov candidate function, 𝐽𝛼, is defined for
applying Lyapunov’s stability theorem in (10):

𝐽𝛼 (𝑥) = 𝐼∑
𝑖=1

(1 − 𝛼)∫𝐴𝑖𝑥
𝑦𝑖

1 − 𝑦𝑖𝑤𝑑𝑤 + 𝛼∫𝐴𝑖𝑥
𝑦𝑖

log 𝑤𝑦𝑖
= 𝐼∑
𝑖=1

(1 − 𝛼) [𝑤 − 𝑦𝑖 log𝑤]𝐴𝑖𝑥𝑦𝑖
+ 𝛼 [𝑤 log 𝑤𝑦𝑖 − 𝑤]

𝐴𝑖𝑥

𝑦𝑖

,

(11)

which is well defined via Proposition 1 when choosing an
initial value 𝑥0 in 𝑅𝐽++. We then calculate its derivative with
respect to the dynamical system in (9) with any 𝛼 ∈ [0, 1] as

𝑑𝐽𝛼𝑑𝑡 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(9) =

𝐼∑
𝑖=1

((1 − 𝛼) (1 − 𝑦𝑖𝐴 𝑖𝑥) + 𝛼 log
𝐴 𝑖𝑥𝑦𝑖 )

⋅ 𝐽∑
𝑗=1

𝐴 𝑖𝑗 𝑑𝑥𝑗𝑑𝑡 = − 𝐽∑
𝑗=1

𝐼∑
𝑖=1

𝐴 𝑖𝑗 ((1 − 𝛼) ( 𝑦𝑖𝐴 𝑖𝑥 − 1) + 𝛼

⋅ log 𝑦𝑖𝐴 𝑖𝑥)𝜆𝑗𝑥𝑗
𝐼∑
𝑘=1

𝐴𝑘𝑗 ((1 − 𝛼) ( 𝑦𝑘𝐴𝑘𝑥 − 1) + 𝛼

⋅ log 𝑦𝑘𝐴𝑘𝑥) = − 𝐽∑
𝑗=1

(√𝜆𝑗𝑥𝑗 𝐼∑
𝑖=1

𝐴 𝑖𝑗

⋅ ((1 − 𝛼) ( 𝑦𝑖𝐴 𝑖𝑥 − 1) + 𝛼 log 𝑦𝑖𝐴 𝑖𝑥))
2

≤ 0.

(12)

The derivative equals zero at 𝑥 = 𝑒 ∈ 𝑅𝐽++. Consequently, the
system has a Lyapunov function, so the equilibrium 𝑒 of the
system is asymptotically stable.

3.2. Hybrid Euler Discretization. Consider an autonomous
differential equation for the state variable 𝑥(𝑡) > 0, 𝑡 ≥ 0,
written by

𝑑𝑥 (𝑡)𝑑𝑡 = 𝑥 (𝑡) (𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡))) , 𝑥 (0) = 𝑥0, (13)

with sufficiently smooth functions 𝑓(𝑥) and 𝑔(𝑥) satisfying𝑓(𝑒) = 𝑔(𝑒) = 0, where 𝑒 > 0 denotes an equilibrium of (13).
Then, we have the geometric multiplicative derivative

𝜋𝑥 (𝑡)𝜋𝑡 = exp (𝑓 (𝑥 (𝑡))) exp (𝑔 (𝑥 (𝑡))) , 𝑥 (0) = 𝑥0, (14)

as a counterpart of the additive derivative. Analogous to
the ordinary Euler method, the multiplicative first-order
expansion [26, 27]

𝑥 ((1 + 𝛿) 𝑡) = 𝑥 (𝑡) (𝜋𝑥 (𝑡)𝜋𝑡 )𝛿 (15)

with small 𝛿 > 0 leads to the iterative formula of the
multiplicative Euler discretization

𝑧 (𝑛 + 1) = 𝑧 (𝑛) exp (𝛿𝑓 (𝑧 (𝑛))) exp (𝛿𝑔 (𝑧 (𝑛))) ,
𝑧 (0) = 𝑥0, (16)

with iteration numbers 𝑛 = 0, 1, 2, . . ..
However, when 𝑔 ≡ 0 in (13), its additive Euler

discretization

𝑧 (𝑛 + 1) = 𝑧 (𝑛) (1 + 𝛿𝑓 (𝑧 (𝑛))) (17)

corresponds to the multiplicative one in (16) with 𝑔 ≡ 0. The
term (1 + 𝛿𝑓(𝑧)) is also considered as a first-order term in
the Taylor series expansion of the function exp(𝛿𝑓(𝑧)) with 𝑧
in the neighborhood of the steady state 𝑒. By replacing a part
of the multiplicative term exp(𝛿𝑓(𝑧)) in (16) with the term(1+𝛿𝑓(𝑧))while preserving themultiplication of 𝑧, we obtain
the formula of a hybrid Euler discretization

𝑧 (𝑛 + 1) = 𝑧 (𝑛) (1 + 𝛿𝑓 (𝑧 (𝑛))) exp (𝛿𝑔 (𝑧 (𝑛))) ,
𝑧 (0) = 𝑥0, (18)

for 𝑛 = 0, 1, 2, . . ., with a combination based on the
additive and multiplicative calculus for the functions 𝑓 and𝑔, respectively. The hybrid Euler method is effective for a
practical calculation of an initial value problem in (13) from
the viewpoint of choosing a larger value of the step-size 𝛿,
when either an additive or multiplicative calculus is better for
each term of the partial vector fields 𝑥𝑓(𝑥) and 𝑥𝑔(𝑥).

The hybrid Euler discretization of the differential equa-
tion in (9) gives the IR algorithm in (6).

4. Experimental Results and Discussion

We conducted experiments to demonstrate the effectiveness
of not only the proposed IR method in (6) with 𝛼 = 0.5
and 𝛿 = 1, say SKLD algorithm, based on the minimization
of SKLD but also the hybrid Euler discretization of the
continuous analog in (9).

We used a modified Shepp-Logan phantom image con-
sisting of 𝑒 ∈ 𝑅𝐽+ shown in Figure 1(a), which is composed of128 × 128 pixels (𝐽 = 16, 384). The projection 𝑦 ∈ 𝑅𝐼+ was
simulated by using the model 𝑦 = 𝐴𝑒 + 𝜎 with 𝜎 denoting
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(a) (b)

Figure 1: (a) Phantom image and (b) sinogram with noisy projection.

the white Gaussian noise such that the signal-to-noise ratio
(SNR) was 30 dB unless otherwise specified and by setting
the number of view angles and detector bins to 180 and 184,
respectively (𝐼 = 33, 120), as illustrated in Figure 1(b) for-
matted into a sinogram. A standard MATLAB (MathWorks,
Natick, USA) ODE solver ode113 implementing a variable
step-size variable order Adams-Bashforth-Moulton method
was used for a numerical calculation of solving an initial value
problem of the differential equation in (9).

Let us first consider which is the most robust discretiza-
tion method for numerical approximation. Figure 2 shows
the time course of the objective function 𝐽𝛼(𝑥(𝑡)) with 𝛼 =0.5, which we denote as 𝐽0.5(𝑥(𝑡)), for the continuous-time
system with 𝛼 = 0.5 at 𝑡 and the discrete-time systems at𝑡 = 𝛿𝑛, which are discretizations of the differential equation
using the additive, multiplicative, and hybrid Euler methods
with the fixed step sizes 𝛿 of 0.01, 0.1, and 1. We see that the
hybrid Euler discretization gives a similar good convergence
to that of a continuous-time system; however, in the case𝛿 = 1, the additive Euler method causes, as time goes on, an
error with oscillation and solutions using the multiplicative
method divergence.

Next, we consider the property of the SKLD algorithm
compared with the algorithms using theML-EMmethod and
MART. Note that the iterative formula in (6) with 𝛿 = 1
becomes the ML-EM, SKLD, and MART algorithms when
the parameter 𝛼 is equal to 0, 0.5, and 1, respectively. The
values of the root mean squared (RMS) distance or 𝐿2-norm
of difference between the phantom image 𝑒 and iterative
state 𝑧(𝑁) obtained using the formula in (6) at the 𝑁th
iteration starting from the common initial value 𝑧𝑗(0) =
∑𝐼𝑖=1 𝑦𝑖/∑𝐼𝑖=1∑𝐽𝑗󸀠=1 𝐴 𝑖𝑗󸀠 , 𝑗 = 1, 2, . . . , 𝐽, and variations in
the parameter 𝛼 are plotted in Figure 3(a). We observed a
value of 𝛼 exists in the open interval (0, 1) minimizing the

quantitative measure when the number𝑁 is relatively small.
In particular, the measure of SKLD is less than those of ML-
EM and MART at, e.g., 𝑁 = 10 and 12. The presence of
noise is required for this property, which is supported by
the fact that an experiment from another simulation with
noise-free projection data gave different results, as shown
in Figure 3(b), such that we had the minimum value of the
measure at 𝛼 = 1. This was due to characteristics of the ML-
EMandMART algorithms being disadvantageous. As a result
of these characteristics, ML-EM has a slow convergence [28–
31], which means that a relatively large number of iterations
is required to obtain an acceptable value of the objective
function, and MART is more susceptible to noise [32, 33],
which may result in an increase of the convergence rate
with increasing iterative steps due to the noisy projection, as
typically seen at 𝛼 = 0 and 1 in Figure 3, respectively.

We carried out other experiments to examine whether
there exists an 𝛼 not equal to 0 or 1, in which the value of
an objective function obtained by using the algorithm in (6)
with 𝛿 = 1 takes a minimum. A set of SPECT projection data
from a publicly accessible database [34] was examined first.
The sinogram of a brain scan and an image reconstructed by
the SKLDalgorithmare shown in Figure 4, where the number
of projections and pixels of the image are, respectively, 𝐼 =7, 680 (128 acquisition bins and 60 projection directions in
180 degrees) and 𝐽 = 7, 569 (87 × 87 pixels). The projection
data for the second example were acquired from an X-ray
CT scanner (Toshiba Medical Systems, Tochigi, Japan) with
a body phantom [35] (Kyoto Kagaku, Kyoto, Japan) using
a tube voltage of 120 kVp and a tube current of 300 mA.
Figure 5 represents the sinogram with 𝐼 = 86, 130 (957
acquisition bins and 90 projection directions in 180 degrees)
and a reconstructed image with 𝐽 = 454, 276 (674 × 674
pixels). The value of the objective function 𝐽0.5 for the image
reconstructed by SKLD algorithm at 30th iteration is 2.86 ×
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Figure 2: Time course of 𝐽0.5(𝑥(𝑡)) as a function of t for continuous-time (magenta) and discrete-time (blue) systems using additive,
multiplicative, and hybrid Euler methods with 𝛿 = 0.01, 0.1, and 1.

104, which is less than 4.61 × 104 obtained using FBP with a
Shepp-Logan filter.

In the physical experiments, as well as a feature of the
object to be reconstructed and also an overdetermined or
underdetermined inverse problem, there exists a nonempty
set of the iteration number 𝑁 and the parameter 𝛼 ∈ (0, 1)
(or especially 𝛼 = 0.5) in which there is a minimum value
of the objective function 𝐽0.5 as shown in Figure 6. From
Figure 6(a), we observe that the algorithm with 𝛼 ≥ 0.1

sufficiently converges to a local minimum at a small iter-
ation number, whereas the ML-EM algorithm has a slow
convergence rate when the state variable is far away from
the local minimum in the state space. Considering the noisy
nature of themeasured projection and large datasets required
for reconstructing large sized images in clinical X-ray CT,
the conditions suitable for practical use include a relatively
small number of iterations exclusively used in IR systems [36]
underwhich our IRmethod is effective, as seen in Figure 6(b).
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Figure 3: Values of RMS distance 𝑑 using proposed algorithm in (6) at Nth iteration while varying 𝛼 with (a) noisy and (b) noise-free
projections.

(a) (b)

Figure 4: (a) Sinogram and (b) reconstructed image using SKLD algorithm at 30th iteration in SPECT example.

5. Concluding Remarks

We proposed the IR algorithm based on the minimization
of 𝛼-skew 𝐽-divergence between the measured and forward
projections. The objective functions to be minimized with
iterative process are KL(𝑦, 𝐴𝑧), KL(𝐴𝑧, 𝑦), and 𝐽-divergence
after setting the value of parameter 𝛼 to 0, 1, and 0.5 in

the IR algorithm, respectively. We used Lyapunov’s theorem
to construct a differential equation for which the IR algo-
rithm is equivalent to the hybrid Euler discretization and
demonstrated the monotonically decreasing convergence of
the 𝐽-divergence with iterative steps to a desired solution
of the continuous-time system. The hybrid Euler was found
to have more robust performance than the additive and
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Figure 5: (a) Sinogram and (b) reconstructed image using SKLD algorithm at 30th iteration in X-ray CT example.
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Figure 6: Values of 𝐽0.5 using proposed algorithm in (6) at Nth iteration while varying 𝛼 in (a) SPECT and (b) X-ray CT examples.

multiplicative Euler methods. The numerical and physical
experiments revealed that the SKLDmethod is advantageous
with respect to the minimization of a distance measure
when the projection data are noisy and when the maximum

iteration number is relatively small. Further investigation
is required to clarify the performance of the proposed IR
algorithm from the viewpoint of image quality and noise
evaluation.
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