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Abstract. Binary tomography is the process of reconstructing a binary image from a
finite number of projections. We present a novel method for solving binary tomographic
inverse problems using a continuous-time image reconstruction (CIR) system described
by nonlinear differential equations based on the minimization of a double Kullback-
Leibler divergence. We prove theoretically that the divergence measure monotonically
decreases in time. Moreover, we demonstrate numerically that the quality of the
reconstructed images of the nonlinear CIR system is better than those from an iterative
reconstruction method.

Keywords: Binary tomography; Continuous-time image reconstruction; Differential equation;
Stability of solution; Kullback-Leibler divergence

1. Introduction

Binary tomography is concerned with the reconstruction of a binary image from a finite

number of projections [1, 2]. In contrast to continuous tomography which is used in, e.g.,

medical X-ray computed tomography (CT) and nuclear emission CT, binary tomography

focuses on the problem of locating an object such as a tumor or blood vessel in the human

body by means of X-ray CT. This kind of inverse problem can be reduced to a convex,

box-constrained optimization problem. As iterative algorithms for solving the problem,

a spectral projected gradient (SPG) method [3, 4] and binary steering of a non-binary

iterative method [5, 6] have been presented. On the other hand, in this paper, we

propose a new approach to reconstructing binary tomographic images resulting from

the idea of continuous dynamical methods [7, 8, 9, 10, 11, 12, 13]. It consists of a

continuous-time image reconstruction (CIR) system described by a piecewise-smooth

switched differential equation based on the minimization of a double Kullback-Leibler
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(KL) divergence. Because all solutions to the nonlinear differential equation stay within

the constrained subspace corresponding to the domain of the divergence, the CIR system

is well-defined if an initial value is taken in the subspace. We prove theoretically that

the double KL-divergence measure can be a common Lyapunov function [14] for the

CIR system. This means that the measure monotonically decreases along the solution

to the switched differential equation for arbitrary switching signals [15, 16]. Moreover,

we compare numerically the convergence properties of the nonlinear CIR method with

those of the maximum-likelihood expectation-maximization (ML-EM) method, which is

a well-known iterative reconstruction technique for emission CT. We show that CIR has

an advantage in terms of the distance to the actual solution under the same measure

observed via the projection data, and the quality of reconstructed images of the CIR is

better than those of the iterative reconstruction algorithm.

2. System Description

Let x ∈ Ω̄ ⊂ RJ be an unknown variable for pixel values satisfying

y = Ax (1)

where y ∈ RI
+ and A ∈ RI×J

+ denote the projection value and a normalized projection

operator corresponding to the Radon transform, respectively, with R+ denoting the set

of non-negative real numbers. We say that the system y = Ax is consistent if it has

a solution. Equation (1) is an ill-posed problem if its solution is not unique or does

not exist [17]. The binary reconstruction problem is to find a binarization of x from an

optimization minimizing an appropriate cost function V (x) regarding the linear system

in Eq. (1) with Ω̄ being the closure of the open hypercube Ω = (0, 1)J .

Before defining the cost function for the inverse problem, we introduce the

generalized Kullback-Leibler divergence [18] of two non-negative vectors α and β:

KL(α, β) =
∑

`

β` log
β`

α`

+ α` − β` (2)

where α` and β` denote the `th elements of α and β, respectively. The divergence

KL(α, β) for the vectors α and β of non-negative real numbers is non-negative with

KL(α, β) = 0 if and only if α = β. This divergence is also called Csiszár’s I-divergence

measure [19]. It leads to effective selection methods for solving optimization problems

with non-negativity constraints and is the only choice consistent with a set of intuitive

postulates such as regularity, locality, and composition-consistency [19, 20].

To solve the inverse problem of binary tomography, we shall consider the

minimization problem,

min
x(t)∈Ω̄

V (x(t)), t ∈ R (3)

V (x) := KL(x, e) + KL(u − x, u − e)

=
J∑

j=1

ej log
ej

xj

+ (1 − ej) log
1 − ej

1 − xj
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where u denotes an all-ones vector (1, 1, . . . , 1)> of length J . Here, we assume that

e ∈ {0, 1}J is a binary solution of Eq. (1) and is excluded from the vectors of all-zeros

and all-ones. It is easily seen that V (x) > 0 unless x = e. If there exists a situation such

that the pair (xj, ej) is either (1, 0) or (0, 1) for some j, we have V = +∞. Therefore,

we can say that the cost function V showing the double KL-divergence is sensitive

to errors. To obtain a time evolution x(t) that converges to a local minimum of the

function V (x(t)), we formulated a switched nonlinear system consisting of the family of

subsystems

dx

dt
= −X(U − X)Am

>(Amx − ym), (4)

t − kτ ∈ [tm−1, tm), t ∈ R+, x(0) = x0

for a series of times 0 = t0 < t1 < t2 < . . . < tM = τ and non-negative integer k, where

X := diag(x) indicates the diagonal matrix in which the diagonal entries starting in

the upper left corner are the elements of x, and U denotes the identity matrix, while

Am ∈ RIm×J
+ and ym ∈ RIm

+ are, respectively, a submatrix consisting of Im partial rows

of A and a subvector of y with the same corresponding rows of Am, for m = 1, 2, . . . , M ,

with M denoting the total number of divisions. We see that the closed convex set Ω̄

is contained within the state space RJ of the solutions, and the vector field of each

subsystem is sufficiently smooth with respect to the state variables.

Note that if we write the subsystem as

dx

dt
= −X(U − γ−1X)Am

>(Amx − ym) (5)

with a positive parameter γ, the CIR systems for continuous tomography considered

in Refs. [21, 22] and for binary tomography defined in Eq. (4) correspond to the cases

where γ = ∞ and γ = 1, respectively.

3. Theoretical Analysis

In this section, we give theoretical results for the behavior of the solution to the

dynamical system in Eq. (4). First, we show that all solutions stay inside the hypercube.

Proposition 1. If we choose initial value x0 ∈ Ω = (0, 1)J in the switched dynamical

system in Eq. (4), then the solution φ(t, x0) stays in Ω for all t ∈ R+.

Proof. Since the subsystem can be written as dxj/dt = −xj(1− xj)(Am
>)j(Amx− ym),

we see that, on the subspace where xj = 0 or xj = 1, the solution satisfies dφj/dt ≡ 0

for any j. Therefore, the subspace is invariant and trajectories cannot pass through

every invariant subspace, according to the uniqueness of solutions for the initial value

problem. This leads to any solution φ(t, x0) of any subsystem in Eq. (4) with initial

value x0 ∈ Ω being in Ω for all t ∈ R+. Consequently, if we choose an initial value in Ω

for the first subsystem under arbitrary switching in the switched system, an end point

of the corresponding trajectory, at a given time of switching, which is the initial point

for the second subsystem, will be in Ω, and so on.
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Note that none of the trajectories converge to the trivial equilibria, the all-zeros

and all-ones vectors, which are unexpected for image reconstruction.

Proposition 2. The equilibria 0 and u of the dynamical system in Eq. (4) are locally

unstable.

Proof. We rewrite the subsystem in Eq. (4) as

dx

dt
= fm(x), m = 1, 2, . . . ,M.

The derivative of fm with respect to x is

∂fm

∂x
(x) = −X(U − X)Am

>Am − (U − 2X) diag
(
Am

>(Amx − ym)
)
.

Therefore, the Jacobian matrices of the linearized equations at the equilibria 0 and u

are respectively

∂fm

∂x
(0) = diag(Am

>ym)

and

∂fm

∂x
(u) = diag(Am

>(Amu − ym)) = diag(Am
>Am(u − e)).

We see that all the eigenvalues of each matrix are non-negative for any m = 1, 2, . . . , M ,

and accordingly, both equilibria are unstable.

Next, we prove the main theoretical result concerning the stability of the common

equilibrium e satisfying ym = Ame for m = 1, 2, . . . , M . Namely, the existence of

a common Lyapunov function for the family of subsystems in Eq. (4) guarantees

the stability of the equilibrium e in the corresponding switched system for arbitrary

switching signals (see Ref. [15]).

Theorem 1. If the system y = Ax has a unique solution e ∈ {0, 1}J , the common

equilibrium e for the dynamical system corresponding to the family of systems in Eq. (4)

is uniformly asymptotically stable.

Proof. Consider a Lyapunov-candidate-function defined in the convex set Ω̄ as

V (x) = KL(x, e) + KL(u − x, u − e), (6)

which is positive definite with respect to the point e, and can be written as

V (x) =
J∑

j=1

ej log
ej

xj

+ (1 − ej) log
1 − ej

1 − xj

=
J∑

j=1

∫ xj

ej

(
v − ej

v
+

v − ej

1 − v

)
dv

=
J∑

j=1

∫ xj

ej

v − ej

v(1 − v)
dv.
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We obtain its derivative along the solution to the subsystem in Eq. (4) as follows:

dV

dt
(x)

∣∣∣∣
(4)

=
J∑

j=1

xj − ej

xj(1 − xj)

dxj

dt
(7)

= −
J∑

j=1

(xj − ej)(Am
>)j(Amx − ym)

= −‖Amx − ym‖2
2

< 0

for x in Ω, which is well-defined according to Proposition 1 by choosing an initial value

in Ω, and for m = 1, 2, . . . ,M . Moreover, the derivative is zero at x = e ∈ Ω̄. Thus,

all subsystems in the family in Eq. (4) share a common Lyapunov function given by

Eq. (6), and therefore, the corresponding switched system is uniformly asymptotically

stable; the terminology uniform is employed here to indicate uniformity with respect to

the switching signals.

4. Experimental Results and Discussion

For ill-posed inverse problems consisting of a binary phantom image and projection

data with a small number of projection views, we compared the CIR method with

the ML-EM method (an iterative method). Figure 1 illustrates an 87 × 87 binary

phantom image with only black and white pixels, which corresponds to e ∈ {0, 1}7569.

Supposing 128 ray paths per projection view for the phantom image, we obtain a

normalized projection operator A ∈ R128p×7569
+ , where p denotes the number of projection

views. In our experiments, we considered three noise-free projection data sets that were

algebraically calculated using y = Ae where y ∈ R128p
+ with p = 4, 5, 6. Therefore,

each CT problem has an infinite number of solutions owing to underdetermined

problems such that I = 128p < J . We here set the angles of projection views to

{0◦, 45◦, 90◦, 135◦} for four projection views, {0◦, 36◦, 72◦, 108◦, 144◦} for five projection

views, and {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} for six projection views. The angles were

measured counterclockwise from the vertical line that passes through the center of the

phantom image.

Figure 1. 87 × 87 binary phantom image with black and white pixels.
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To simplify the comparison, we dealt with an unblocked CIR system derived from

Eq. (4) with M = 1. Its dynamics is described by

dx

dt
= −X(U − X)A>(Ax − y), t ∈ R+. (8)

According to Proposition 1, we set the initial values to x(0) = x0 ∈ (0, 1)J so that the

domain of solutions to this system becomes (0, 1)J . As mentioned above, this method

based on Eq. (8) minimizes Eq. (6). We numerically confirmed that the KL-divergence

is monotone decreasing even for the ill-posed case. On the other hand, the iterative step

of the ML-EM method is defined by

zj(n + 1) = zj(n)s−1
j

I∑
i=1

Aijyi

(Az(n))i

, n = 0, 1, . . . , zj(0) = x0
j (9)

for j = 1, 2, . . . , J , where sj =
∑I

i=1 Aij and Aij is an (i, j) element of A. The ML-

EM algorithm minimizes [23] the function KL(Az, y) over all non-negative vectors z. It

converges to a solution, but no characterization of the limit is known [23]. For binary

tomography, Censor [1] proposed a binary steering of the non-binary iterative method

that steers the reconstruction process towards a binary solution. The steering process

is a heuristic step with no deeper mathematical justification. In this paper, to seek a

solution in Ω̄, we modify the ML-EM method by replacing the zj(n+1) given by Eq. (9)

with a smaller value between one and zj(n + 1).

In order to compare the convergence properties of the continuous-time and discrete-

time systems, we select the points of times with the same measure, which can be observed

via the projection data. Using the solutions x(t) to Eq. (4) and z(n) to Eq. (9) emanating

from the same initial value x0 ∈ Ω, the set of a pair of times is defined as

Γ := {(n, t) ∈ Z+ × R+ : K(z(n)) = K(x(t)), (10)

K(z(k − 1)) > K(z(k)) for k = 1, 2, . . . , n,

K(x(τ)) is monotonically decreasing for τ ∈ [0, t]}

with Z+ denoting the set of positive integer numbers and K(w) := KL(Aw, y). Now,

let us consider the distances

(Dz(n), Dx(n)) :=

(
‖z(n) − e‖1

‖e‖1

,
‖x(t) − e‖1

‖e‖1

)
, (n, t) ∈ Γ. (11)

In Fig. 2, the sequences of Dx(n) and Dz(n) along the solutions to Eqs. (8) and

(9) with initial values x0 are plotted as solid and dotted lines. The results in Figs. 2(a),

2(b), and 2(c) were obtained from projection data sets with four, five, and six projection

views, respectively. For each projection data set, the values of Dx(n) and Dz(n) decrease

as n increases. This illustrates that the quality of images with either method becomes

better and better as time passes. Moreover, Dx(n) is always less than Dz(n); i.e., this

suggests that the CIR method produces images that are more similar to the phantom

image compared with the ML-EM method. We also found that the contribution of the

ML-EM method to minimize the absolute relative error for the phantom image was

smaller than that of the CIR method in spite of it minimizing the value of KL(Az, y).



Continuous-time image reconstruction for binary tomography 7

Figure 3 compares tomographic images reconstructed with the two methods. These

images were reconstructed from four, five, and six projection views and from values of

Dx(n) and Dz(n) at n = 92, 53, and 92, respectively; the n corresponds to the right end

of the abscissa in each graph. The images were also binarized using a simple threshold

technique that makes the color of the jth pixel white only if the value of the jth state

variable is greater than 0.5; otherwise, the pixel is black. We also present the Hamming

D
x
(n
),

D
z
(n
)

-

102

103

104

0 10 20 30 40 50 60 70 80 90

CIR
ML-EM

n -

(a)

D
x
(n
),

D
z
(n
)

-

102

103

104

0 10 20 30 40 50

CIR
ML-EM

n -

(b)

D
x
(n
),

D
z
(n
)

-

101

102

103

104

0 10 20 30 40 50 60 70 80 90

CIR
ML-EM

n -

(c)

Figure 2. Comparison of CIR and ML-EM methods using sequences of absolute
relative errors for phantom image. Dx(n) and Dz(n) corresponding to CIR and ML-
EM methods are plotted as solid and dotted lines, respectively. Projection data sets
had (a) four, (b) five, and (c) six projection views.
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distance (H) between the binarized reconstructed image and the phantom image below

each image.

A comparison of these images shows that the quality of images made with the CIR

method is better than the quality of the images made with the ML-EM method at

(n, t) ∈ Γ. The decrease in H also provides us with a quantitative evaluation for visual

inspection. In particular, H was zero for the image made with the CIR method and

six projection views; i.e., the reconstructed binary image and the phantom image were

exactly the same.

H = 282 H = 61 H = 0
(a)

H = 386 H = 343 H = 180
(b)

Figure 3. Images reconstructed with (a) CIR method and (b) ML-EM method. All
the images were binarized by using a thresholding technique, and the images from the
left to the right were reconstructed using projection data sets with four, five, and six
projection views, respectively. H denotes the Hamming distance between a binary
reconstructed image and the phantom image.

5. Concluding Remarks

We proposed a nonlinear continuous method for solving inverse problems in binary

tomography. The CIR system produces box-constrained solutions and in the well-

posed case, convergence is theoretically guaranteed on the basis of minimization of

the double KL-divergence measure. Through numerical experiments, we confirmed that

the divergence measure monotonically decreases even in the ill-posed case with a small

number of projection views. It is also found that Dx(n) is less than Dz(n) at all points of
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times (n, t) ∈ Γ under the same measure observed via projection data, where Dx(n) and

Dz(n) denote the distances to the actual solution for the CIR and ML-EM methods,

respectively. Moreover, we demonstrated that the images with the CIR method are

higher in quality than those made with the ML-EM method. These results lead us to

the conclusion that the CIR method would be effective for binary tomography.
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