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Abstract. Binary tomography is the process of reconstructing a binary image from a
finite number of projections. We present a novel method for solving binary tomographic
inverse problems using a continuous-time image reconstruction (CIR) system described
by nonlinear differential equations based on the minimization of a double Kullback-
Leibler divergence. We prove theoretically that the divergence measure monotonically
decreases in time. Moreover, we demonstrate numerically that the quality of the
reconstructed images of the nonlinear CIR system is better than those from an iterative
reconstruction method.
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1. Introduction

Binary tomography is concerned with the reconstruction of a binary image from a finite
number of projections [1, 2]. In contrast to continuous tomography which is used in, e.g.,
medical X-ray computed tomography (CT) and nuclear emission CT, binary tomography
focuses on the problem of locating an object such as a tumor or blood vessel in the human
body by means of X-ray CT. This kind of inverse problem can be reduced to a convex,
box-constrained optimization problem. As iterative algorithms for solving the problem,
a spectral projected gradient (SPG) method [3, 4] and binary steering of a non-binary
iterative method [5, 6] have been presented. On the other hand, in this paper, we
propose a new approach to reconstructing binary tomographic images resulting from
the idea of continuous dynamical methods [7, 8, 9, 10, 11, 12, 13]. It consists of a
continuous-time image reconstruction (CIR) system described by a piecewise-smooth
switched differential equation based on the minimization of a double Kullback-Leibler
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(KL) divergence. Because all solutions to the nonlinear differential equation stay within
the constrained subspace corresponding to the domain of the divergence, the CIR system
is well-defined if an initial value is taken in the subspace. We prove theoretically that
the double KL-divergence measure can be a common Lyapunov function [14] for the
CIR system. This means that the measure monotonically decreases along the solution
to the switched differential equation for arbitrary switching signals [15, 16]. Moreover,
we compare numerically the convergence properties of the nonlinear CIR method with
those of the maximum-likelihood expectation-maximization (ML-EM) method, which is
a well-known iterative reconstruction technique for emission CT. We show that CIR has
an advantage in terms of the distance to the actual solution under the same measure
observed via the projection data, and the quality of reconstructed images of the CIR is
better than those of the iterative reconstruction algorithm.

2. System Description

Let x € Q C R’ be an unknown variable for pixel values satisfying
y=Azx (1)

where y € Rfr and A € Rff‘] denote the projection value and a normalized projection
operator corresponding to the Radon transform, respectively, with R, denoting the set
of non-negative real numbers. We say that the system y = Ax is consistent if it has
a solution. Equation (1) is an ill-posed problem if its solution is not unique or does
not exist [17]. The binary reconstruction problem is to find a binarization of  from an
optimization minimizing an appropriate cost function V' (z) regarding the linear system
in Eq. (1) with Q being the closure of the open hypercube Q = (0,1)”.

Before defining the cost function for the inverse problem, we introduce the
generalized Kullback-Leibler divergence [18] of two non-negative vectors o and [3:

KL(a, 8) = Y IOg(% +ar— B (2)
¢

where ay and (3, denote the fth elements of o and 3, respectively. The divergence
KL(«, 8) for the vectors a and § of non-negative real numbers is non-negative with
KL(a, B) = 0 if and only if @ = 3. This divergence is also called Csiszér’s I-divergence
measure [19]. Tt leads to effective selection methods for solving optimization problems
with non-negativity constraints and is the only choice consistent with a set of intuitive
postulates such as regularity, locality, and composition-consistency [19, 20].

To solve the inverse problem of binary tomography, we shall consider the
minimization problem,

min V(z(t)), tE€R (3)
z(t)eQ
V(z) = KL(z,e) + KL(u — z,u —e)
4 e 1—e
= Zejng_]. + (1 —e;)log . —x]

j=1 J J
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where u denotes an all-ones vector (1,1,...,1)" of length J. Here, we assume that
e € {0,1}7 is a binary solution of Eq. (1) and is excluded from the vectors of all-zeros
and all-ones. It is easily seen that V(x) > 0 unless x = e. If there exists a situation such
that the pair (z;,€e;) is either (1,0) or (0,1) for some j, we have V' = +o00. Therefore,
we can say that the cost function V' showing the double KL-divergence is sensitive
to errors. To obtain a time evolution z(t) that converges to a local minimum of the
function V' (z(t)), we formulated a switched nonlinear system consisting of the family of
subsystems

dx T
o = XU = X) AT (A = y), (4)

t— k7T € [tm_1,tm), t€ Ry, z(0)=2a"

for a series of times 0 =ty < t; <ty < ... < tj)y = 7 and non-negative integer k, where
X := diag(x) indicates the diagonal matrix in which the diagonal entries starting in
the upper left corner are the elements of x, and U denotes the identity matrix, while
A, € Rﬁ”x‘] and y,, € Rﬁ" are, respectively, a submatrix consisting of I,,, partial rows
of A and a subvector of y with the same corresponding rows of A,,, form =1,2,..., M,
with M denoting the total number of divisions. We see that the closed convex set
is contained within the state space R’ of the solutions, and the vector field of each
subsystem is sufficiently smooth with respect to the state variables.
Note that if we write the subsystem as
dr
i
with a positive parameter v, the CIR systems for continuous tomography considered
in Refs. [21, 22] and for binary tomography defined in Eq. (4) correspond to the cases

—X(U =7y X) A (Anz — Y (5)

where v = oo and v = 1, respectively.

3. Theoretical Analysis

In this section, we give theoretical results for the behavior of the solution to the
dynamical system in Eq. (4). First, we show that all solutions stay inside the hypercube.

Proposition 1. If we choose initial value z° € Q = (0,1)7 in the switched dynamical
system in Eq. (4), then the solution ¢(t, %) stays in Q for allt € R,.

Proof. Since the subsystem can be written as dz;/dt = —z;(1 — 2;)(Amn )i (AmT — Ym),
we see that, on the subspace where z; = 0 or x; = 1, the solution satisfies d¢,;/dt = 0
for any j. Therefore, the subspace is invariant and trajectories cannot pass through
every invariant subspace, according to the uniqueness of solutions for the initial value
problem. This leads to any solution ¢(¢,z°) of any subsystem in Eq. (4) with initial
value 2° € Q being in Q for all t € R,. Consequently, if we choose an initial value in
for the first subsystem under arbitrary switching in the switched system, an end point
of the corresponding trajectory, at a given time of switching, which is the initial point
for the second subsystem, will be in €2, and so on. O
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Note that none of the trajectories converge to the trivial equilibria, the all-zeros
and all-ones vectors, which are unexpected for image reconstruction.

Proposition 2. The equilibria 0 and u of the dynamical system in Eq. (4) are locally
unstable.

Proof. We rewrite the subsystem in Eq. (4) as

Z—? = fm(z), m=12 ... M.
The derivative of f,, with respect to x is
Ofm :
%(x) = —X(U-X)A,"A,, — (U —2X)diag (AmT(Amx — ym)) )

Therefore, the Jacobian matrices of the linearized equations at the equilibria 0 and «
are respectively

%(0) = diag(AmTym)
and

9 fm : T : T

%(u) = diag(An (Anu —yn)) = diag(An ' Ap(u —e)).
We see that all the eigenvalues of each matrix are non-negative for any m =1,2,..., M,
and accordingly, both equilibria are unstable. O]

Next, we prove the main theoretical result concerning the stability of the common
equilibrium e satisfying v,, = A,,e for m = 1,2,..., M. Namely, the existence of
a common Lyapunov function for the family of subsystems in Eq. (4) guarantees
the stability of the equilibrium e in the corresponding switched system for arbitrary
switching signals (see Ref. [15]).

Theorem 1. If the system y = Az has a unique solution e € {0,1}’, the common
equilibrium e for the dynamical system corresponding to the family of systems in Eq. (4)
1s uniformly asymptotically stable.

Proof. Consider a Lyapunov-candidate-function defined in the convex set € as
V(z) = KL(z,e) + KL(u — z,u — e), (6)
which is positive definite with respect to the point e, and can be written as

1_€j
1—2z

J
V(z) = Zej log%jt(l—ej)log :
j=1 J J
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We obtain its derivative along the solution to the subsystem in Eq. (4) as follows:
J
av

%(x)

L= dr
l’j(l—l'j) dt

(7)

4) j=1
J

= = (25— ¢)(An )i (Anz — ym)
j=1

= —||Apr — ymHg
<0

for x in €2, which is well-defined according to Proposition 1 by choosing an initial value
in , and for m = 1,2,..., M. Moreover, the derivative is zero at z = e € Q. Thus,
all subsystems in the family in Eq. (4) share a common Lyapunov function given by
Eq. (6), and therefore, the corresponding switched system is uniformly asymptotically
stable; the terminology uniform is employed here to indicate uniformity with respect to
the switching signals. O

4. Experimental Results and Discussion

For ill-posed inverse problems consisting of a binary phantom image and projection
data with a small number of projection views, we compared the CIR method with
the ML-EM method (an iterative method). Figure 1 illustrates an 87 x 87 binary
phantom image with only black and white pixels, which corresponds to e € {0,1}7°6,
Supposing 128 ray paths per projection view for the phantom image, we obtain a
normalized projection operator A € Rfsp 7569 where p denotes the number of projection
views. In our experiments, we considered three noise-free projection data sets that were
algebraically calculated using y = Ae where y € Rf8p with p = 4,5,6. Therefore,
each CT problem has an infinite number of solutions owing to underdetermined
problems such that I = 128p < J. We here set the angles of projection views to
{0°,45°,90°,135°} for four projection views, {0°,36°,72°,108°,144°} for five projection
views, and {0°,30°,60°,90° 120° 150°} for six projection views. The angles were
measured counterclockwise from the vertical line that passes through the center of the
phantom image.

Figure 1. 87 x 87 binary phantom image with black and white pixels.
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To simplify the comparison, we dealt with an unblocked CIR system derived from

Eq. (4) with M = 1. Its dynamics is described by

d

d—i” = —X(U—-X)AT(Az —y), t€R,. 8)
According to Proposition 1, we set the initial values to x(0) = 2° € (0,1)7 so that the
domain of solutions to this system becomes (0,1)7. As mentioned above, this method
based on Eq. (8) minimizes Eq. (6). We numerically confirmed that the KL-divergence
is monotone decreasing even for the ill-posed case. On the other hand, the iterative step
of the ML-EM method is defined by

I

zj(n+1):zj(n)s;1;%, n=01,..., z(0)=a) (9)
for j = 1,2,...,J, where s; = Zle A;; and A;; is an (i,7) element of A. The ML-
EM algorithm minimizes [23] the function KL(Az,y) over all non-negative vectors z. It
converges to a solution, but no characterization of the limit is known [23]. For binary
tomography, Censor [1] proposed a binary steering of the non-binary iterative method
that steers the reconstruction process towards a binary solution. The steering process
is a heuristic step with no deeper mathematical justification. In this paper, to seek a
solution in €2, we modify the ML-EM method by replacing the z;(n+1) given by Eq. (9)
with a smaller value between one and z;(n + 1).

In order to compare the convergence properties of the continuous-time and discrete-
time systems, we select the points of times with the same measure, which can be observed
via the projection data. Using the solutions z(t) to Eq. (4) and z(n) to Eq. (9) emanating
from the same initial value 2° € Q, the set of a pair of times is defined as

I''={(n,t) € Z, x Ry : K(z(n)) = K(x(t)), (10)
K(z(k—1)) > K(2(k)) for k=1,2,...,n,
K (z(7)) is monotonically decreasing for 7 € [0, ¢]}

with Z, denoting the set of positive integer numbers and K(w) := KL(Aw,y). Now,
let us consider the distances
[2(n) — el [lz(t) — el

(Dz(n),Dx(n))::< TR TR ) (n,t) €T (11)

In Fig. 2, the sequences of D,(n) and D,(n) along the solutions to Eqgs. (8) and
0

(9) with initial values z° are plotted as solid and dotted lines. The results in Figs. 2(a),
2(b), and 2(c) were obtained from projection data sets with four, five, and six projection
views, respectively. For each projection data set, the values of D,(n) and D,(n) decrease
as n increases. This illustrates that the quality of images with either method becomes
better and better as time passes. Moreover, D,(n) is always less than D,(n); i.e., this
suggests that the CIR method produces images that are more similar to the phantom
image compared with the ML-EM method. We also found that the contribution of the
ML-EM method to minimize the absolute relative error for the phantom image was

smaller than that of the CIR method in spite of it minimizing the value of KL(Az,y).
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Figure 3 compares tomographic images reconstructed with the two methods. These
images were reconstructed from four, five, and six projection views and from values of
D,(n) and D,(n) at n = 92, 53, and 92, respectively; the n corresponds to the right end
of the abscissa in each graph. The images were also binarized using a simple threshold
technique that makes the color of the jth pixel white only if the value of the jth state
variable is greater than 0.5; otherwise, the pixel is black. We also present the Hamming

4
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Figure 2. Comparison of CIR and ML-EM methods using sequences of absolute
relative errors for phantom image. D,(n) and D,(n) corresponding to CIR and ML-
EM methods are plotted as solid and dotted lines, respectively. Projection data sets
had (a) four, (b) five, and (c) six projection views.
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distance (H) between the binarized reconstructed image and the phantom image below
each image.

A comparison of these images shows that the quality of images made with the CIR
method is better than the quality of the images made with the ML-EM method at
(n,t) € I'. The decrease in H also provides us with a quantitative evaluation for visual
inspection. In particular, H was zero for the image made with the CIR method and
six projection views; i.e., the reconstructed binary image and the phantom image were
exactly the same.

= 282
(a)
= 386 =180

(b)

Figure 3. Images reconstructed with (a) CIR method and (b) ML-EM method. All
the images were binarized by using a thresholding technique, and the images from the
left to the right were reconstructed using projection data sets with four, five, and six
projection views, respectively. H denotes the Hamming distance between a binary
reconstructed image and the phantom image.

5. Concluding Remarks

We proposed a nonlinear continuous method for solving inverse problems in binary
tomography. The CIR system produces box-constrained solutions and in the well-
posed case, convergence is theoretically guaranteed on the basis of minimization of
the double KL-divergence measure. Through numerical experiments, we confirmed that
the divergence measure monotonically decreases even in the ill-posed case with a small
number of projection views. It is also found that D,(n) is less than D, (n) at all points of
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times (n,t) € I under the same measure observed via projection data, where D,(n) and
D, (n) denote the distances to the actual solution for the CIR and ML-EM methods,
respectively. Moreover, we demonstrated that the images with the CIR method are
higher in quality than those made with the ML-EM method. These results lead us to
the conclusion that the CIR method would be effective for binary tomography.
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