264 research outputs found

    Asymmetric Ejecta Distribution in SN 1006

    Get PDF
    We present the results from deep X-ray observations (~400 ks in total) of SN 1006 by the X-ray astronomy satellite Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and Fe. The observed abundance pattern in the ejecta components is in good agreement with that predicted by a standard model of Type Ia supernovae (SNe). The spatially resolved analysis reveals that the distribution of the O-burning and incomplete Si-burning products (Si, S, and Ar) is asymmetric, while that of the C-burning products (O, Ne, and Mg) is relatively uniform in the SNR interior. The peak position of the former is clearly shifted by 5' (~3.2 pc at a distance of 2.2 kpc) to the southeast from the SNR's geometric center. Using the SNR age of ~1000 yr, we constrain the velocity asymmetry (in projection) of ejecta to be ~3100 km/s. The abundance of Fe is also significantly higher in the southeast region than in the northwest region. Given that the non-uniformity is observed only among the heavier elements (Si through Fe), we argue that SN 1006 originates from an asymmetric explosion, as is expected from recent multi-dimensional simulations of Type Ia SNe, although we cannot eliminate the possibility that an inhomogeneous ambient medium induced the apparent non-uniformity. Possible evidence for the Cr K-shell line and line broadening in the Fe K-shell emission is also found.Comment: 11 pages, 12 figures, 4 tables, formatted using emulateapj.cls. Accepted for publication in Ap

    N49: the first robust discovery of a recombining plasma in an extra galactic supernova remnant

    Get PDF
    Recent discoveries of recombining plasmas (RPs) in supernova remnants (SNRs) have dramatically changed our understanding of SNR evolution. To date, a dozen of RP SNRs have been identified in the Galaxy. Here we present Suzaku deep observations of four SNRs in the Large Magellanic Cloud (LMC), N49, N49B, N23, and DEM L71, for accurate determination of their plasma state. Our uniform analysis reveals that only N49 is in the recombining state among them, which is the first robust discovery of a RP from an extra-galactic SNR. Given that RPs have been identified only in core-collapse SNRs, our result strongly suggests a massive star origin of this SNR. On the other hand, no clear evidence for a RP is confirmed in N23, from which detection of recombination lines and continua was previously claimed. Comparing the physical properties of the RP SNRs identified so far, we find that all of them are categorized into the "mixed-morphology" class and interacting with surrounding molecular clouds. This might be a key to solve formation mechanisms of the RPs.Comment: 8 pages, 4 figures, Accepted for publication in Ap

    Suzaku View of the Supernova Remnant RCW 86: X-Ray Studies of Newly-Discovered Fe-Rich Ejecta

    Full text link
    We report on results of imaging and spectral analysis of the supernova remnant (SNR) RCW 86 observed with Suzaku. The SNR is known to exhibit K-shell emission of low ionized Fe, possibly originating from supernova ejecta. We revealed the global distribution of the Fe-rich plasma in the entire remnant, for the first time; the Fe-K emission was clearly detected from the west, north, and south regions, in addition to the X-ray brighter shells of southwest and northeast, where the presence of the Fe-rich ejecta has already been reported. The spectrum of each region is well represented by a three-component model consisting of low- and high-temperature thermal plasmas and a non-thermal emission. The lower-temperature component, with elemental abundances of near the solar values, likely originates from the forward shocked interstellar medium, while the Fe-rich ejecta is described by the hotter plasma. From the morphologies of the forward and reverse shocks in the west region, the total ejecta mass is estimated to be 1-2M_sun for the typical explosion energy of ~ 1 x 10^{51} erg. The integrated flux of the Fe-K emission from the entire SNR roughly corresponds to a total Fe mass of about 1M_sun. Both of these estimates suggest a Type Ia supernova origin of this SNR. We also find possible evidence of an Fe-rich clump located beyond the forward-shock front in the north rim, which is reminiscent of ejecta knots observed in the Tycho and Vela SNRs.Comment: Published by PAS

    X-ray spectroscopy of galaxy clusters: beyond the CIE modeling

    Get PDF
    X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.Comment: published in Space Science Review

    A Suzaku Study of Ejecta Structure and Origin of Hard X-ray Emission in the Supernova Remnant G156.2+5.7

    Get PDF
    We report an X-ray study of the evolved Galactic supernova remnant (SNR) G156.2+5.7 based on six pointing observations with Suzaku. The remnant's large extent (100\arcmin in diameter) allows us to investigate its radial structure in the northwestern and eastern directions from the apparent center. The X-ray spectra were well fit with a two-component non-equilibrium ionization model representing the swept-up interstellar medium (ISM) and the metal-rich ejecta. We found prominent central concentrations of Si, S and Fe from the ejecta component; the lighter elements of O, Ne and Mg were distributed more uniformly. The temperature of the ISM component suggests a slow shock (610-960 km s1^{-1}), hence the remnant's age is estimated to be 7,000-15,000 yr, assuming its distance to be \sim1.1 kpc. G156.2+5.7 has also been thought to emit hard, non-thermal X-rays, despite being considerably older than any other such remnant. In response to a recent discovery of a background cluster of galaxies (2XMM J045637.2+522411), we carefully excluded its contribution, and reexamined the origin of the hard X-ray emission. We found that the residual hard X-ray emission is consistent with the expected level of the cosmic X-ray background. Thus, no robust evidence for the non-thermal emission was obtained from G156.2+5.7. These results are consistent with the picture of an evolved SNR.Comment: 10 pages 8 figures, accepted for PAS

    X-Ray Spectrum of a Peculiar Supernova Remnant G359.1-0.5

    Get PDF
    We present the Suzaku results of a supernova remnant (SNR), G359.1-0.5 in the direction of the Galactic center region. From the SNR, we find prominent K-shell lines of highly ionized Si and S ions, together with unusual structures at 2.5-3.0 and 3.1-3.6 keV. No canonical SNR plasma model, in either ionization equilibrium or under-ionization, can explain the structures. The energies and shapes of the structures are similar to those of the radiative transitions of free electrons to the K-shell of He-like Si and S ions (radiative recombination continuum: RRC). The presence of the strong RRC structures indicates that the plasma is in over-ionization. In fact, the observed spectrum is well fitted with an over-ionized plasma model. The best-fit electron temperature of 0.29 keV is far smaller than the ionization temperature of 0.77 keV, which means that G359.1-0.5 is in extreme condition of over-ionization. We report some cautions on the physical parameters, and comment possible origins for the over-ionized plasma.Comment: 7 pages, 5 figures, accepted for publication in PAS

    Suzaku Observation of the RCW86 Northeastern Shell

    Full text link
    This paper reports the Suzaku results on the northeast shell of RCW 86. With the spatial and spectral analysis, we separated the X-rays into three distinct components; low (kT_e~0.3keV) and high (kT_e~1.8keV) temperature plasmas and a non-thermal component, and discovered their spatial distributions are different from each other. The low temperature plasma is dominated at the east rim, whereas the non-thermal emission is the brightest at the northeast rim which is spatially connected from the east rim. The high temperature plasma, found to contain the ~6.42keV line (K alpha of low-ionized iron), is enhanced at the inward region with respect to the east rim and has no spatial correlation with the non-thermal X-ray (the northeast). The Fe-Kalpha line, therefore, is not related to the non-thermal emission but originates from Fe-rich ejecta heated to the high temperatures by the reverse shock. Since the metal abundances of the low temperature plasma are sub-solar, the most possible origin of this component is interstellar medium heated by a blast wave. The non-thermal X-ray, which has a power-law index of ~2.8, is likely to be synchrotron emission. A possible scenario to explain these morphologies and spectra is: A fast moving blast wave in a thin cavity of OB association collided with a dense interstellar medium or cloud at the east region very recently. As the result, the reverse shock in this interior decelerated, and arrived at the Fe-rich region of the ejecta and heated it. In the northeast rim, on the other hand, the blast wave is still moving fast, and accelerated high energy electrons to emit synchrotron X-rays.Comment: 13 pages, 5 figures (9 figure files), accepted for publication in PAS
    corecore