44 research outputs found
Hadronic decays of Higgs boson at NNLO matched with parton shower
We present predictions for hadronic decays of the Higgs boson at
next-to-next-to-leading order (NNLO) in QCD matched with parton shower based on
the POWHEG framework. Those include decays into bottom quarks with full
bottom-quark mass dependence, light quarks, and gluons in the heavy top quark
effective theory. Our calculations describe exclusive decays of the Higgs boson
with leading logarithmic accuracy in the Sudakov region and next-to-leading
order (NLO) accuracy matched with parton shower in the three-jet region, with
normalizations fixed to the partial width at NNLO. We estimated remaining
perturbative uncertainties taking typical event shape variables as an example
and demonstrated the need of future improvements on both parton shower and
matrix element calculations. The calculations can be used immediately in
evaluations of the physics performances of detector designs for future Higgs
factories.Comment: 28 pages, 12 figures; published versio
RETRACTED: vB-ApyS-JF1, the First Trueperella pyogenes Phage, Shows Potential as an Alternative Treatment Strategy for Trueperella pyogenes Infections
Trueperella pyogenes (T. pyogenes) is an important opportunistic animal pathogen that causes huge economic losses to the animal husbandry industry. The emergence of bacterial resistance and the unsatisfactory effect of the vaccine have prompted investigators to explore alternative strategies for controlling T. pyogenes infection. Due to the ability of phages to kill multidrug-resistant bacteria, the use of phage therapy to combat multidrug-resistant bacterial infections has attracted attention. In this study, a T. pyogenes phage, vB-ApyS-JF1 (JF1), was isolated from sewage samples, and its whole genome and biological characteristics were elucidated. Moreover, the protective effect of phage JF1 on a mouse bacteremic model caused by T. pyogenes was studied. JF1 harbors a double-stranded DNA genome with a length of 90,130 bp (30.57% G + C). The genome of JF1 lacked bacterial virulence–, antibiotic resistance– and lysogenesis-related genes. Moreover, the genome sequence of JF1 exhibited low coverage (<6%) with all published phages in the NCBI database, and a phylogenetic analysis of the terminase large subunits and capsid indicated that JF1 was evolutionarily distinct from known phages. In addition, JF1 was stable over a wide range of pH values (3 to 11) and temperatures (4 to 50°C) and exhibited strong lytic activity against T. pyogenes in vitro. In murine experiments, a single intraperitoneal administration of JF1 30 min post-inoculation provided 100% protection for mice against T. pyogenes infection. Compared to the phosphate-buffered saline (PBS) treatment group, JF1 significantly (P < 0.01) reduced the bacterial load in the blood and tissues of infected mice. Meanwhile, treatment with phage JF1 relieved the pathological symptoms observed in each tissue. Furthermore, the levels of the inflammatory cytokines tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-6 (IL-6) in the blood of infected mice were significantly (P < 0.01) decreased in the phage-treated group. Taken together, these results indicate that phage JF1 demonstrated great potential as an alternative therapeutic treatment against T. pyogenes infection
Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation
Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms
High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men
Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5′ and 3′ half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3–6 days before symptom onset and 14–17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized
Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia
Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae
Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage
Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1
We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1–5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1–5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV–macaque mucosal infection model for HIV-1 vaccine and microbicide research
Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL).We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia
Deciphering the heterogeneity dominated by tumor-associated macrophages for survival prognostication and prediction of immunotherapy response in lung adenocarcinoma
Abstract Tumor-associated macrophages (TAMs) are a specific subset of macrophages that reside inside the tumor microenvironment. The dynamic interplay between TAMs and tumor cells plays a crucial role in the treatment response and prognosis of lung adenocarcinoma (LUAD). The study aimed to examine the association between TAMs and LUAD to advance the development of targeted strategies and immunotherapeutic approaches for treating this type of lung cancer. The study employed single-cell mRNA sequencing data to characterize the immune cell composition of LUAD and delineate distinct subpopulations of TAMs. The “BayesPrism” and “Seurat” R packages were employed to examine the association between these subgroups and immunotherapy and clinical features to identify novel immunotherapy biomarkers. Furthermore, a predictive signature was generated to forecast patient prognosis by examining the gene expression profile of immunotherapy-associated TAMs subsets and using 104 machine-learning techniques. A comprehensive investigation has shown the existence of a hitherto unidentified subgroup of TAMs known as RGS1 + TAMs, which has been found to have a strong correlation with the efficacy of immunotherapy and the occurrence of tumor metastasis in LUAD patients. CD83 was identified CD83 as a distinct biomarker for the expression of RGS1 + TAMs, showcasing its potential utility as an indicator for immunotherapeutic interventions. Furthermore, the prognostic capacity of the RTMscore signature, encompassing three specific mRNA (NR4A2, MMP14, and NPC2), demonstrated enhanced robustness when contrasted against the comprehensive collection of 104 features outlined in the published study. CD83 has potential as an immunotherapeutic biomarker. Meanwhile, The RTMscore signature established in the present study might be beneficial for survival prognostication
An Overall Uniformity Optimization Method of the Spherical Icosahedral Grid Based on the Optimal Transformation Theory
The improvement of overall uniformity and smoothness of spherical icosahedral grids, the basic framework of atmospheric models, is a key to reducing simulation errors. However, most of the existing grid optimization methods have optimized grid from different aspects and not improved overall uniformity and smoothness of grid at the same time, directly affecting the accuracy and stability of numerical simulation. Although a well-defined grid with more than 12 points cannot be constructed on a sphere, the area uniformity and the interval uniformity of the spherical grid can be traded off to enhance extremely the overall grid uniformity and smoothness. To solve this problem, an overall uniformity and smoothness optimization method of the spherical icosahedral grid is proposed based on the optimal transformation theory. The spherical cell decomposition method has been introduced to iteratively update the grid to minimize the spherical transportation cost, achieving an overall optimization of the spherical icosahedral grid. Experiments on the four optimized grids (the spring dynamics optimized grid, the Heikes and Randall optimized grid, the spherical centroidal Voronoi tessellations optimized grid and XU optimized grid) demonstrate that the grid area uniformity of our method has been raised by 22.60% of SPRG grid, −1.30% of HR grid, 38.30% of SCVT grid and 38.20% of XU grid, and the grid interval uniformity has been improved by 2.50% of SPRG grid, 2.80% of HR grid, 11.10% of SCVT grid and 11.00% of XU grid. Although the grid uniformity of the proposed method is similar with the HR grid, the smoothness of grid deformation has been enhanced by 79.32% of grid area and 24.07% of grid length. To some extent, the proposed method may be viewed as a novel optimization approach of the spherical icosahedral grid which can improve grid overall uniformity and smoothness of grid deformation