64 research outputs found

    Numerical Investigation of Diffusion Flame in Transonic Flow with Large Pressure Gradient

    Full text link
    A finite-volume method for the steady, compressible, reacting, turbulent Navier-Stokes equations is developed and implemented by using a novel splitting scheme for the stiff source terms in chemical reaction. The laminar and turbulent reacting flows in a mixing layer with large streamwise pressure gradient are studied and compared to the boundary-layer solutions. The influence of chemical reaction on the turbulent transport in the mixing layer is analyzed. The influence of vitiated air on the combustion process and aerodynamic performance is also investigated for the cases of turbulent mixing layer and turbine cascade.Comment: 21 pages, 20 figure

    Controllability, Reachability, and Stabilizability of Finite Automata: A Controllability Matrix Method

    Get PDF
    This paper investigates the controllability, reachability, and stabilizability of finite automata by using the semitensor product of matrices. Firstly, by expressing the states, inputs, and outputs as vector forms, an algebraic form is obtained for finite automata. Secondly, based on the algebraic form, a controllability matrix is constructed for finite automata. Thirdly, some necessary and sufficient conditions are presented for the controllability, reachability, and stabilizability of finite automata by using the controllability matrix. Finally, an illustrative example is given to support the obtained new results

    Shared genetics and causal relationships between major depressive disorder and COVID-19 related traits: a large-scale genome-wide cross-trait meta-analysis

    Get PDF
    IntroductionThe comorbidity between major depressive disorder (MDD) and coronavirus disease of 2019 (COVID-19) related traits have long been identified in clinical settings, but their shared genetic foundation and causal relationships are unknown. Here, we investigated the genetic mechanisms behind COVID-19 related traits and MDD using the cross-trait meta-analysis, and evaluated the underlying causal relationships between MDD and 3 different COVID-19 outcomes (severe COVID-19, hospitalized COVID-19, and COVID-19 infection).MethodsIn this study, we conducted a comprehensive analysis using the most up-to-date and publicly available GWAS summary statistics to explore shared genetic etiology and the causality between MDD and COVID-19 outcomes. We first used genome-wide cross-trait meta-analysis to identify the pleiotropic genomic SNPs and the genes shared by MDD and COVID-19 outcomes, and then explore the potential bidirectional causal relationships between MDD and COVID-19 outcomes by implementing a bidirectional MR study design. We further conducted functional annotations analyses to obtain biological insight for shared genes from the results of cross-trait meta-analysis.ResultsWe have identified 71 SNPs located on 25 different genes are shared between MDD and COVID-19 outcomes. We have also found that genetic liability to MDD is a causal factor for COVID-19 outcomes. In particular, we found that MDD has causal effect on severe COVID-19 (ORโ€‰=โ€‰1.832, 95% CIโ€‰=โ€‰1.037โ€“3.236) and hospitalized COVID-19 (ORโ€‰=โ€‰1.412, 95% CIโ€‰=โ€‰1.021โ€“1.953). Functional analysis suggested that the shared genes are enriched in Cushing syndrome, neuroactive ligand-receptor interaction.DiscussionOur findings provide convincing evidence on shared genetic etiology and causal relationships between MDD and COVID-19 outcomes, which is crucial to prevention, and therapeutic treatment of MDD and COVID-19

    ๅญฆไผšๆŠ„้Œฒ

    Get PDF
    <p><b>Observation of pulmonary artery sections</b> (200X, HE) The pulmonary artery wall thickness of disease (D) is noticeably increased. In the D sample, 1) the tunica adventicia was more compact and exhibited increased connective tissue; 2) the smooth muscle fiber was thicker; 3) there was excessive fiber production; and 4) the intima was more compact. The arrows indicate the pathological changes.</p

    The reporting quality of randomized controlled trials in Chinese herbal medicine (CHM) formulas for diabetes based on the consort statement and its extension for CHM formulas

    Get PDF
    Background: This study aimed to assess the overall reporting quality of randomized controlled trials (RCTs) in Chinese herbal medicine (CHM) formulas for patients with diabetes, and to identify factors associated with better reporting quality.Methods: Four databases including PubMed, Embase, Cochrane Library and Web of Science were systematically searched from their inception to December 2022. The reporting quality was assessed based on the Consolidated Standards of Reporting Trials (CONSORT) statement and its CHM formula extension. The overall CONSORT and its CHM formula extension scores were calculated and expressed as proportions separately. We also analyzed the pre-specified study characteristics and performed exploratory regressions to determine their associations with the reporting quality.Results: Seventy-two RCTs were included. Overall reporting quality (mean adherence) were 53.56% and 45.71% on the CONSORT statement and its CHM formula extension, respectively. The strongest associations with reporting quality based on the CONSORT statement were multiple centers and larger author numbers. Compliance with the CHM formula extension, particularly regarding the disclosure of the targeted traditional Chinese medicine (TCM) pattern (s), was generally insufficient.Conclusion: The reporting quality of RCTs in CHM formulas for diabetes remains unsatisfactory, and the adherence to the CHM formula extension is even poorer. In order to ensure transparent and standardized reporting of RCTs, it is essential to advocate for or even mandate adherence of the CONSORT statement and its CHM formula extension when reporting trials in CHM formulas for diabetes by both authors and editors

    Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (&gt;250 KD), K7(ฮ”GT-1) and K7(ฮ”wcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage

    Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1

    Get PDF
    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1โ€“5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1โ€“5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIVโ€“macaque mucosal infection model for HIV-1 vaccine and microbicide research
    • โ€ฆ
    corecore