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This paper investigates the controllability, reachability, and stabilizability of finite automata by using the semitensor product of
matrices. Firstly, by expressing the states, inputs, and outputs as vector forms, an algebraic form is obtained for finite automata.
Secondly, based on the algebraic form, a controllability matrix is constructed for finite automata. Thirdly, some necessary
and sufficient conditions are presented for the controllability, reachability, and stabilizability of finite automata by using the
controllability matrix. Finally, an illustrative example is given to support the obtained new results.

1. Introduction

In the research field of theoretical computer science, finite
automaton is one of the simplest models of computation.
Finite automaton is a device whose states take values from
a finite set. It receives a discrete sequence of inputs from the
outside world and changes its state according to the inputs.
The study of finite automata has received many scholars’
research interest in the last century [1–5] due to its wide
applications in engineering, computer science, and so on.

As we all know, controllability and stabilizability anal-
ysis of finite automata are fundamental topics, which are
important and necessary to the solvability of many related
problems [1, 4, 6].The concepts of controllability, reachability,
and stabilizability of finite automata were defined in [2] by
resorting to the classic control theory. The controllability
of a deterministic Rabin automaton was studied in [7] by
defining the “controllability subset.” Kobayashi et al. [8]
investigated the state feedback stabilization of a deterministic
finite automaton and presented some new results.

Recently, a new matrix product, namely, the semitensor
product (STP) of matrices, has been proposed by Cheng et
al. [9]. Up to now, STP has been successfully applied to many
research fields related to finite-valued systems like Boolean
networks [10–20], multivalued logical networks [21–23],

game theory [24, 25], finite automata [5, 26], and so on
[27–35]. The main feature of STP is to convert a finite-valued
system into an equivalent algebraic form [22]. Thus, STP
provides a convenient way for the construction and analysis
of finite automata [5, 26]. Xu andHong [5] provided amatrix-
based algebraic approach for the reachability analysis of finite
automata with the help of STP. Yan et al. [26] studied the
controllability and stabilizability analysis of finite automata
based on STP and presented some novel results. It should
be pointed out that although the concepts of controllability,
reachability, and stabilizability of finite automata come
from classic control theory, there exist fewer results on the
construction of controllability matrix for finite automata.

In this paper, we investigate the controllability, reacha-
bility, and stabilizability of deterministic finite automata by
using STP.Themain contribution of this paper is to construct
a controllability matrix for finite automata based on the alge-
braic form. Using the controllability matrix, we present some
necessary and sufficient conditions for the controllability,
reachability, and stabilizability of finite automata. Compared
with the existing results [5, 26], our results are more easily
verified via MATLAB.

The rest of this paper is organized as follows. Section 2
contains some necessary preliminaries on the semitensor
product of matrices and finite automata. Section 3 studies
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the controllability, reachability, and stabilizability of finite
automata and presents the main results of this paper. In
Section 4, an illustrative example is given to support our new
results, which is followed by a brief conclusion in Section 5.

Notations. R, N, and Z+ denote the set of real numbers,
the set of natural numbers, and the set of positive integers,
respectively. Δ 𝑛 fl {𝛿𝑘𝑛 : 𝑘 = 1, . . . , 𝑛}, where 𝛿𝑘𝑛 denotes the𝑘th column of the 𝑛 × 𝑛 identity matrix 𝐼𝑛. An 𝑛 × 𝑡 matrix𝑀 is called a logical matrix, if𝑀 = [𝛿𝑖1𝑛 𝛿𝑖2𝑛 ⋅ ⋅ ⋅ 𝛿𝑖𝑡𝑛 ], which
is briefly denoted by𝑀 = 𝛿𝑛 [𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑡]. The set of 𝑛 × 𝑡
logical matrices is denoted by L𝑛×𝑡. Given a real matrix 𝐴,
Col𝑖(𝐴), Row𝑗(𝐴), and (𝐴)𝑖,𝑗 denote the 𝑖th column, the 𝑗th
row, and the (𝑖, 𝑗)th element of 𝐴, respectively. 𝐴 > 0 if and
only if (𝐴)𝑖,𝑗 > 0holds for any 𝑖, 𝑗. Blk𝑖(𝐴)denote the 𝑖th block
of an 𝑛 × 𝑚𝑛matrix 𝐴.
2. Preliminaries

2.1. Semitensor Product of Matrices. In this part, we recall
some necessary preliminaries on STP. For details, please refer
to [9].

Definition 1. Given two matrices 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑝×𝑞,
the semitensor product of 𝐴 and 𝐵 is defined as

𝐴 ⋉ 𝐵 = (𝐴 ⊗ 𝐼𝛼/𝑛) (𝐵 ⊗ 𝐼𝛼/𝑝) , (1)

where 𝛼 = lcm(𝑛, 𝑝) is the least common multiple of 𝑛 and 𝑝
and ⊗ is the Kronecker product of matrices.

Lemma 2. STP has the following properties:

(1) Let𝑋 ∈ R𝑡×1 be a column vector and 𝐴 ∈ R𝑚×𝑛. Then

𝑋 ⋉ 𝐴 = (𝐼𝑡 ⊗ 𝐴) ⋉ 𝑋. (2)

(2) Let 𝑋 ∈ R𝑚×1 and 𝑌 ∈ R𝑛×1 be two column vectors.
Then

𝑌 ⋉ 𝑋 = 𝑊[𝑚,𝑛] ⋉ 𝑋 ⋉ 𝑌, (3)

where𝑊[𝑚,𝑛] ∈L𝑚𝑛×𝑚𝑛 is called the swap matrix.

2.2. Finite Automata. In this subsection, we recall some
definitions of finite automata.

A finite automaton is a seven-tuple 𝐴 = (𝑋,𝑈, 𝑌, 𝑓,𝑔, 𝑥0, 𝑋𝑚), in which 𝑋, 𝑈, and 𝑌 are finite sets of states,
input symbols, and outputs, respectively; 𝑥0 and 𝑋𝑚 ⊂ 𝑋
are the initial state and the set of accepted states; 𝑓 and 𝑔
are transition and output functions, which are defined as 𝑓 :𝑋 × 𝑈 → 2𝑋 and 𝑔 : 𝑋 × 𝑈 → 2𝑌, where 2𝑋 and 2𝑌 denote
the power set of 𝑋 and 𝑌, respectively; that is, 𝑓(𝑥, 𝑢) ⊂ 𝑋,𝑔(𝑥, 𝑢) ⊂ 𝑌. 𝑈∗ represents the finite string set on 𝑈, which
does not include the empty transition. Given an initial state𝑥0 ∈ 𝑋 and an input symbol 𝑢 ∈ 𝑈, the function 𝑓 uniquely
determines the next subset of states, that is, 𝑓(𝑥0, 𝑢) ⊂ 𝑋,
while the function 𝑔 uniquely determines the next subset of
outputs; that is, 𝑔(𝑥0, 𝑢) ⊂ 𝑌.

Throughout this paper, we only consider the determinis-
tic finite automata; that is, |𝑓(𝑥, 𝑢)| ≤ 1 holds for any 𝑥 ∈ 𝑋
and 𝑢 ∈ 𝑈. In addition, we only investigate the controlla-
bility, reachability, and stabilizability of deterministic finite
automata, and thus we do not use 𝑌 and 𝑔 in the seven-tuple𝐴 = (𝑋,𝑈, 𝑌, 𝑓, 𝑔, 𝑥0, 𝑋𝑚).

In the following, we recall the definitions of controlla-
bility, reachability, and stabilizability for deterministic finite
automata.

Definition 3. (i) A state 𝑥𝑝 ∈ 𝑋 is said to be controllable to𝑥𝑞 ∈ 𝑋, if there exists a control sequence 𝑢𝑡 ∈ 𝑈∗ such that𝑓(𝑥𝑝, 𝑢𝑡) = 𝑥𝑞.
(ii) A state 𝑥𝑝 ∈ 𝑋 is said to be controllable, if 𝑥𝑝 ∈ 𝑋 is

controllable to any state 𝑥𝑞 ∈ 𝑋.
Definition 4. (i) A state 𝑥𝑞 ∈ 𝑋 is said to be reachable from𝑥𝑝 ∈ 𝑋, if there exists a control sequence 𝑢𝑡 ∈ 𝑈∗ such that𝑓(𝑥𝑝, 𝑢𝑡) = 𝑥𝑞.

(ii) A state 𝑥𝑞 ∈ 𝑋 is said to be reachable, if 𝑥𝑞 ⊂ 𝑋 is
reachable from any state 𝑥𝑝 ∈ 𝑋.

Given two nonempty sets 𝑋1 ⊆ 𝑋 and 𝑋2 ⊆ 𝑋 satisfying𝑋1 ∪ 𝑋2 = 𝑋 and 𝑋1 ∩ 𝑋2 = 0, we have the following
definitions.

Definition 5. A nonempty set of state 𝑋1 ⊆ 𝑋 is said to be
controllable, if, for any state 𝑥𝑞 ∈ 𝑋2, there exist an 𝑥𝑝 ∈ 𝑋1
and a control sequence 𝑢𝑡 ∈ 𝑈∗ such that 𝑓(𝑥𝑝, 𝑢𝑡) = 𝑥𝑞.
Definition 6. A nonempty set of state 𝑋2 ⊆ 𝑋 is said to be
reachable, if, for any state 𝑥𝑝 ∈ 𝑋1, there exist an 𝑥𝑞 ∈ 𝑋2
and a control sequence 𝑢𝑡 ∈ 𝑈∗ such that 𝑓(𝑥𝑝, 𝑢𝑡) = 𝑥𝑞.
Definition 7. A nonempty set of state 𝑋1 ⊆ 𝑋 is said to be 1-
step returnable, if, for any state 𝑥0 = 𝑥𝑝 ∈ 𝑋1, there exists an
input 𝑢𝑖 ∈ 𝑈 such that 𝑓(𝑥𝑝, 𝑢𝑖) = 𝑥𝑠 ∈ 𝑋1.
Definition 8. A nonempty set of state 𝑋1 ⊆ 𝑋 is said to be
stabilizable, if𝑋1 is reachable and 1-step returnable.

3. Main Results

In this section, we investigate the controllability, reachability,
and stabilizability of deterministic finite automata by con-
structing a controllability matrix.

3.1. Controllability Matrix. For a deterministic finite automa-
ton 𝐴 = (𝑋,𝑈, 𝑌, 𝑓, 𝑔, 𝑥0, 𝑋𝑚), where 𝑋 = {𝑥1, . . . , 𝑥𝑛} and𝑈 = {𝑢1, . . . , 𝑢𝑚}, we identify 𝑥𝑖 as 𝛿𝑖𝑛 (𝑖 = 1, . . . , 𝑛) and
call 𝛿𝑖𝑛 the vector form of 𝑥𝑖. Then, 𝑋 can be denoted as Δ 𝑛;
that is, 𝑋 = {𝛿1𝑛, . . . , 𝛿𝑛𝑛}. Similarly, for 𝑈, we identify 𝑢𝑗 with𝛿𝑗𝑚 (𝑗 = 1, . . . , 𝑚) and call 𝛿𝑗𝑚 the vector form of 𝑢𝑗. Then,𝑈 = {𝛿1𝑚, . . . , 𝛿𝑚𝑚}.

Using the vector form of elements in 𝑋 and 𝑈, Yan et al.
[26] construct the transition structure matrix (TSM) of 𝐴 =(𝑋,𝑈, 𝑌, 𝑓, 𝑔, 𝑥0, 𝑋𝑚) as 𝐹 = [𝐹1 ⋅ ⋅ ⋅ 𝐹𝑚]. One can see that if
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there exists a control 𝑢𝑗 ∈ 𝑈which moves state 𝑥𝑝 to state 𝑥𝑞,
then

𝛿𝑞𝑛 = 𝐹 ⋉ 𝛿𝑗𝑚 ⋉ 𝛿𝑝𝑛 . (4)

In this case, (𝐹𝑗)𝑞,𝑝 = 1. Otherwise, (𝐹𝑗)𝑞,𝑝 = 0. Thus, setting

𝑀 = 𝑚∑
𝑗=1

𝐹𝑗 ∈ R
𝑛×𝑛, (5)

then one can use 𝑀 to judge whether or not state 𝑥𝑝 is
controllable to state 𝑥𝑞 in one step. Precisely, state 𝑥𝑝 is
controllable to state 𝑥𝑞 in one step, if and only if (𝑀)𝑞,𝑝 > 0.

Now, we show that, for any 𝑡 ∈ Z+, state 𝑥𝑝 is controllable
to state 𝑥𝑞 at the 𝑡th step, if and only if (𝑀𝑡)𝑞,𝑝 > 0. We prove
it by induction. Obviously, when 𝑡 = 1, the conclusion holds.
Assume that the conclusion holds for some 𝑡 ∈ Z+. Then,
for the case of 𝑡 + 1, state 𝑥𝑝 is controllable to state 𝑥𝑞 at the(𝑡+1)th step, if and only if there exists some state 𝑥𝑟 ∈ 𝑋 such
that state 𝑥𝑝 is controllable to state 𝑥𝑟 at the 𝑡th step and state𝑥𝑟 is controllable to state 𝑥𝑞 in one step. Hence,

(𝑀𝑡+1)
𝑞,𝑝
= 𝑛∑
𝑖=1

(𝑀)𝑞,𝑖 (𝑀𝑡)𝑖,𝑝 ≥ (𝑀)𝑞,𝑟 (𝑀𝑡)𝑟,𝑝 > 0. (6)

By induction, for any 𝑡 ∈ Z+, state 𝑥𝑝 is controllable to
state 𝑥𝑞 at the 𝑡th step, if and only if (𝑀𝑡)𝑞,𝑝 > 0. Thus,∑∞𝑡=1𝑀𝑡 contains all the controllability information of the
finite automata. Noticing that𝑀 is an 𝑛× 𝑛 square matrix, by
Cayley-Hamilton theorem, we only need to consider 𝑡 ≤ 𝑛.
Then, we define the controllability matrix for finite automata
as follows.

Definition 9. Set 𝑀 = ∑𝑚𝑗=1 𝐹𝑗 ∈ R𝑛×𝑛. The controllability
matrix of finite automata is 𝐶 = ∑𝑛𝑡=1𝑀𝑡.

Based on the controllability matrix, we have the following
result.

Algorithm 10. Consider the finite automata 𝐴 = (𝑋,𝑈, 𝑌,𝑓, 𝑔, 𝑥0, 𝑋𝑚). Then, the controls which force 𝑥𝑝 to 𝑥𝑞 in the
shortest time 𝑙 can be designed by the following steps:

(1) Find the smallest integer 𝑙 such that, for

F
𝑙
0 fl𝑀𝑙−1𝐹
= [Blk1 (F𝑙0) Blk2 (F𝑙0) ⋅ ⋅ ⋅ Blk𝑚 (F𝑙0)] , (7)

there exists a block, say, Blk𝜃(F𝑙0), satisfying[Blk𝜃(F𝑙0)]𝑞,𝑝 > 0.
(2) Set 𝑢(0) = 𝛿𝜃𝑚 and 𝑥𝑞 = 𝛿𝑞𝑛. If 𝑙 = 1, stop. Otherwise,

go to Step (3).
(3) Find 𝑟 and 𝜂 such that [Blk𝜂(F10)]𝑞,𝑟 > 0 and

[Blk𝜃(F𝑙−10 )]𝑟,𝑝 > 0, where F10 = 𝐹 and F𝑙−10 =
𝑀𝑙−2𝐹. Set 𝑢(𝑙 − 1) = 𝛿𝜂𝑚 and 𝑥(𝑙 − 1) = 𝛿𝑟𝑛.

1
1

2

2

2
1
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Figure 1: A finite automata.

(4) If 𝑙 − 1 = 1, stop. Otherwise, replace 𝑙 and 𝑞 by 𝑙 − 1
and 𝑟, respectively, and go to Step (3).

Example 11. Consider a finite automaton 𝐴 = (𝑋,𝑈, 𝑌, 𝑓,𝑔, 𝑥0, 𝑋𝑚) given in Figure 1, where 𝑋 = {𝑥1, 𝑥2, 𝑥3}, 𝑈 ={1, 2}. Suppose that 𝑥0 = 𝑥1 and 𝑋𝑚 = {𝑥3}. Then, 𝑋 can
be denoted as Δ 3 = {𝛿13 , 𝛿23 , 𝛿33}. Similarly, 𝑈 = Δ 2 = {𝛿12 , 𝛿22},𝑥0 = 𝛿33 ,𝑋𝑚 = {𝛿23}.

The transition structure matrix of the finite automata𝐴 is

𝐹 = 𝛿3 [2 3 1 3 1 3] . (8)

Split 𝐹 = [𝐹1 𝐹2], where 𝐹1 = 𝛿3 [2 3 1] and 𝐹2 =𝛿3 [3 1 3]. Then,

𝑀 = [[
[
0 1 1
1 0 0
1 1 1

]]
]
. (9)

Thus, the controllability matrix is

𝐶 = 3∑
𝑡=1

𝑀𝑡 = [[
[
4 5 5
3 2 2
7 7 7

]]
]
. (10)

By Algorithm 10, one can obtain that [Blk1(F20)]2,3 > 0.
Setting 𝑥𝑝 = 𝛿33 , 𝑢(0) = 𝛿12 , and 𝑥𝑞 = 𝛿23 , one can find 𝑟 = 1
and 𝜂 = 1 such that [Blk1(F10)]2,1 > 0 and [Blk1(F10)]1,3 > 0.
Let 𝑢(1) = 𝛿12 and 𝑥1 = 𝛿13 . Hence, state 𝑥3 is controllable to
state 𝑥2 at the 2nd step.

3.2. Controllability, Reachability, and Stabilizability. In this
part, we study the controllability, reachability, and stabiliz-
ability of deterministic finite automata based on the control-
lability matrix.

According to the meaning of controllability matrix, we
have the following results.

Theorem 12. The state 𝑥𝑝 ∈ 𝑋 is controllable, if and only if

𝐶𝑜𝑙𝑝 (𝐶) > 0. (11)

Proof.
Necessity. Suppose that the state 𝑥𝑝 ∈ 𝑋 is controllable. By
Definition 3, 𝑥𝑝 ∈ 𝑋 is controllable to any state 𝑥𝑞 ∈ 𝑋.
Based on (4), one can see that there exists a control sequence{𝑢𝑖𝛼 : 𝛼 = 0, . . . , 𝑠 − 1} ⊆ 𝑈 (1 ≤ 𝑠 ≤ 𝑛) satisfying
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𝛿𝑞𝑛 = 𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0 ⋉ 𝛿𝑝𝑛 . Thus, (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0, which implies
that

(𝐶)𝑞,𝑝 ≥ (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0. (12)

From the arbitrariness of 𝑞, we have Col𝑝(𝐶) > 0.
Sufficiency. Suppose that Col𝑝(𝐶) > 0 holds. Then, for any
state𝑥𝑞 ∈ 𝑋, one can find some (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0.Therefore,
under the control sequence {𝑢𝑖𝛼 : 𝛼 = 0, . . . , 𝑠 − 1} ⊆ 𝑈, the
state 𝑥𝑝 ⊂ 𝑋 is controllable to 𝑥𝑞 ∈ 𝑋. From the arbitrariness
of 𝑞, the state 𝑥𝑝 ∈ 𝑋 is controllable.

Theorem 13. The state 𝑥𝑞 ∈ 𝑋 is reachable, if and only if

𝑅𝑜𝑤𝑞 (𝐶) > 0. (13)

Proof.
Necessity. Suppose that the state 𝑥𝑞 ∈ 𝑋 is reachable. By
Definition 4, 𝑥𝑞 ∈ 𝑋 is reachable to any state 𝑥𝑝 ∈ 𝑋. One can
obtain from (4) that there exists a control sequence {𝑢𝑖𝛼 : 𝛼 =0, . . . , 𝑠 − 1} ⊆ 𝑈 (1 ≤ 𝑠 ≤ 𝑛) satisfying 𝛿𝑞𝑛 = 𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0 ⋉ 𝛿𝑝𝑛 .
Thus, (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0, which shows that

(𝐶)𝑞,𝑝 ≥ (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0. (14)

From the arbitrariness of𝑝, one can conclude that Row𝑞(𝐶) >0.
Sufficiency. Suppose that Row𝑞(𝐶) > 0. Then, for any state𝑥𝑝 ∈ 𝑋, there exists some (𝐹𝑖𝑠−1 ⋅ ⋅ ⋅ 𝐹𝑖0)𝑞,𝑝 > 0. Hence, under
the control sequence {𝑢𝑖𝛼 : 𝛼 = 0, . . . , 𝑠 − 1} ⊆ 𝑈, the state𝑥𝑞 ⊂ 𝑋 is reachable to 𝑥𝑝 ∈ 𝑋. By Definition 4, the state𝑥𝑞 ∈ 𝑋 is reachable.

Given two nonempty sets 𝑋1 = {𝛿𝑝1𝑛 , . . . , 𝛿𝑝𝑠𝑛 } and 𝑋2 ={𝛿𝑝𝑠+1𝑛 , . . . , 𝛿𝑝𝑛𝑛 }, where𝑋1 ∪ 𝑋2 = 𝑋 and𝑋1 ∩ 𝑋2 = 0, define
𝐶𝑋1 = [

𝑠∑
𝛽=1

(𝐶)𝑝𝑠+1,𝑝𝛽 ⋅ ⋅ ⋅
𝑠∑
𝛽=1

(𝐶)𝑝𝑛,𝑝𝛽] ,

𝑅𝑋2 = [
𝑛∑
𝛾=𝑠+1

(𝐶)𝑝𝛾,𝑝1 ⋅ ⋅ ⋅
𝑛∑
𝛾=𝑠+1

(𝐶)𝑝𝛾,𝑝𝑠] .
(15)

Based onTheorems 12 and 13, we have the following result.

Theorem 14. (i) The nonempty set 𝑋1 ⊆ 𝑋 is controllable, if
and only if 𝐶𝑋1 > 0.

(ii) The nonempty set 𝑋2 ⊆ 𝑋 is reachable, if and only if𝑅𝑋2 > 0.
Proof.
(i) Necessity. Suppose that the nonempty set 𝑋1 ⊆ 𝑋 is
controllable. By Definition 5, for any state 𝛿𝑝𝛾𝑛 ∈ 𝑋2, there
exist a 𝛿𝑝𝛽𝑛 ∈ 𝑋1 and a control sequence 𝑢𝑡 ∈ 𝑈∗ such that𝑓(𝛿𝑝𝛽𝑛 , 𝑢𝑡) = 𝛿𝑝𝛾𝑛 . Based on Theorems 12 and 13, for a fixed𝛿𝑝𝛾𝑛 ∈ 𝑋2, 𝛾 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑛, at least one of the following

cases is true: (𝐶)𝑝𝛾,𝑝1 > 0, (𝐶)𝑝𝛾,𝑝2 > 0, . . . , (𝐶)𝑝𝛾 ,𝑝𝑠 > 0.
Therefore, for a fixed 𝛿𝑝𝛾𝑛 ∈ 𝑋2, one can conclude that∑𝑠𝛽=1(𝐶)𝑝𝛾,𝑝𝛽 > 0. From the arbitrariness of 𝑝𝛾, one can see
that

𝐶𝑋1 = [
𝑠∑
𝛽=1

(𝐶)𝑝𝑠+1,𝑝𝛽 ⋅ ⋅ ⋅
𝑠∑
𝛽=1

(𝐶)𝑝𝑛,𝑝𝛽] > 0. (16)

Sufficiency. Suppose that 𝐶𝑋1 = [∑𝑠𝛽=1(𝐶)𝑝𝑠+1,𝑝𝛽 ⋅ ⋅ ⋅∑𝑠𝛽=1(𝐶)𝑝𝑛,𝑝𝛽] > 0. Then, for any 𝛾 = 𝑠 + 1, . . . , 𝑛, we
have ∑𝑠𝛽=1(𝐶)𝑝𝛾,𝑝𝛽 > 0. It means that, for any state 𝛿𝑝𝛾𝑛 ∈ 𝑋2,
there exist a 𝛿𝑝𝛽𝑛 ∈ 𝑋1 and a control sequence 𝑢𝑡 ∈ 𝑈∗ such
that 𝑓(𝛿𝑝𝛽𝑛 , 𝑢𝑡) = 𝛿𝑝𝛾𝑛 . By Definition 5, the nonempty set𝑋1 ⊆ 𝑋 is controllable.

(ii) Necessity. Suppose that the nonempty set 𝑋2 ⊆ 𝑋 is
reachable. By Definition 6, for any state 𝛿𝑝𝛽𝑛 ∈ 𝑋1, there
exist a 𝛿𝑝𝛾𝑛 ∈ 𝑋2 and a control sequence 𝑢𝑡 ∈ 𝑈∗ such that𝑓(𝛿𝑝𝛽𝑛 , 𝑢𝑡) = 𝛿𝑝𝛾𝑛 . Based on Theorems 12 and 13, for a fixed𝛿𝑝𝛽𝑛 ∈ 𝑋1, 𝛽 = 1, 2, . . . , 𝑠, at least one of the following cases is
true: (𝐶)𝑝𝑠+1,𝑝𝛽 > 0, (𝐶)𝑝𝑠+2,𝑝𝛽 > 0, . . . , (𝐶)𝑝𝑛,𝑝𝛽 > 0. Therefore,
for a fixed 𝛿𝑝𝛽𝑛 ∈ 𝑋1, one can see that ∑𝑛𝛾=𝑠+1(𝐶)𝑝𝛾,𝑝𝛽 > 0.
From the arbitrariness of 𝑝𝛽, we have

[ 𝑛∑
𝛾=𝑠+1

(𝐶)𝑝𝛾,𝑝1 ⋅ ⋅ ⋅
𝑛∑
𝛾=𝑠+1

(𝐶)𝑝𝛾,𝑝𝑠] > 0. (17)

Sufficiency. Suppose that [∑𝑛𝛾=𝑠+1(𝐶)𝑝𝛾,𝑝1 ⋅ ⋅ ⋅ ∑𝑛𝛾=𝑠+1(𝐶)𝑝𝛾,𝑝𝑠]> 0. Then, for any 𝛽 = 1, 2, . . . , 𝑠, we have ∑𝑛𝛾=𝑠+1(𝐶)𝑝𝛾,𝑝𝛽 > 0.
It means that, for any state 𝛿𝑝𝛽𝑛 ∈ 𝑋1, there exist a 𝛿𝑝𝛾𝑛 ∈ 𝑋2
and a control sequence 𝑢𝑡 ∈ 𝑈∗ such that𝑓(𝛿𝑝𝛽𝑛 , 𝑢𝑡) = 𝛿𝑝𝛾𝑛 . By
Definition 6, the nonempty set𝑋2 ⊆ 𝑋 is reachable.

Finally, we study the stabilizability of deterministic finite
automata.

For𝑋1 = {𝛿𝑝1𝑛 , . . . , 𝛿𝑝𝑠𝑛 } and𝑋2 = {𝛿𝑝𝑠+1𝑛 , . . . , 𝛿𝑝𝑛𝑛 }, define
𝑀𝑋1 = [

𝑠∑
𝑖=1

(𝑀)𝑝𝑖 ,𝑝1 ⋅ ⋅ ⋅
𝑠∑
𝑖=1

(𝑀)𝑝𝑖,𝑝𝑠] . (18)

Theorem 15. The nonempty set𝑋1 ⊆ 𝑋 is 1-step returnable, if
and only if𝑀𝑋1 > 0.
Proof. By Definition 7, one can see that the nonempty set𝑋1 ⊆ 𝑋 is 1-step returnable, if and only if, for any state𝛿𝑝𝛽𝑛 ∈ 𝑋1, there exist an input 𝑢𝑖 ∈ 𝑈 and some 𝛿𝑝𝑖𝑛 ∈ 𝑋1
such that 𝑓(𝛿𝑝𝛽𝑛 , 𝑢𝑖) = 𝛿𝑝𝑖𝑛 , that is, for a fixed 𝛿𝑝𝛽𝑛 ∈ 𝑋1, 𝛽 =1, 2, . . . , 𝑠, at least one of the following cases is true: (𝑀)𝑝1,𝑝𝛽 >0, (𝑀)𝑝2,𝑝𝛽 > 0, . . . , (𝑀)𝑝𝑠 ,𝑝𝛽 > 0. Hence, ∑𝑠𝑖=1(𝑀)𝑝𝑖,𝑝𝛽 > 0,∀𝛽 = 1, . . . , 𝑠. From the arbitrariness of 𝑝𝛽, one can obtain
that𝑀𝑋1 > 0.
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Based on Theorems 14 and 15, we have the following
result.

Corollary 16. The nonempty set𝑋1 ⊆ 𝑋 is stabilizable, if and
only if𝑀𝑋1 > 0 and 𝑅𝑋1 > 0.
Proof. By Definition 8, 𝑋1 ⊆ 𝑋 is stabilizable, if and only if𝑋1 is reachable and 1-step returnable. Based on Theorems 14
and 15, the conclusion follows.

Remark 17. Compared with the existing results on the con-
trollability and stabilizability of deterministic finite automata
[5, 26], the main advantage of our results is to propose a
unified tool, that is, controllability matrix, for the study of
deterministic finite automata. The new conditions are more
easily verified via MATLAB.

4. An Illustrative Example

Consider the finite automata𝐴 = (𝑋,𝑈, 𝑌, 𝑓, 𝑔, 𝑥0, 𝑋𝑚) given
in Figure 2, where𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑈 = {1, 2}.

From Figure 2, we can see that 𝑥1 1→ 𝑥2 1→ 𝑥3 2→ 𝑥4 and𝑥1 1→ 𝑥2 2→ 𝑥1. Therefore, by Definition 3, one can obtain
that 𝑥1 is controllable. Similarly, by Definition 3, we conclude
that 𝑥2, 𝑥3, and 𝑥4 are also controllable. By Definition 4, we
can also find that all the states are reachable.

Assume that 𝑋1 = {𝑥1, 𝑥2} and 𝑋2 = {𝑥3, 𝑥4}. Since𝑥1 ∈ 𝑋1 1→ 𝑥2 1→ 𝑥3 ∈ 𝑋2 and 𝑥1 ∈ 𝑋1 2→ 𝑥4 ∈ 𝑋2, by
Definition 5, one can see that𝑋1 is controllable. Similarly, we
also obtain that𝑋2 is controllable. Since 𝑥3 2→ 𝑥4 1→ 𝑥2 2→ 𝑥1
and 𝑥1 1→ 𝑥2 1→ 𝑥3 2→ 𝑥4, by Definition 6, we can obtain
that𝑋1 and𝑋2 are reachable. From Figure 2, we can see that
𝑥1 1→ 𝑥2, 𝑥2 2→ 𝑥1, 𝑥3 2→ 𝑥4, and 𝑥4 2→ 𝑥3. Hence, by
Definition 7,𝑋1 and𝑋2 are 1-step returnable. ByDefinition 8,
the sets𝑋1 and𝑋2 are stabilizable.

Now, we check the above properties based on the control-
lability matrix.

The transition structure matrix of the finite automata𝐴 is

𝐹 = 𝛿4 [2 3 3 2 4 1 4 3] . (19)

Split 𝐹 = [𝐹1 𝐹2], where 𝐹1 = 𝛿4 [2 3 3 2] and 𝐹2 =𝛿4 [4 1 4 3]. Then,

𝑀 = [[[[
[

0 1 0 0
1 0 0 1
0 1 1 11 0 1 0

]]]]
]
. (20)

Thus, the controllability matrix is

𝐶 = 4∑
𝑡=1

𝑀𝑡 = [[[[[
[

3 4 2 3
7 5 5 6
12 13 14 14
8 8 9 7

]]]]]
]
. (21)

1

2

1

2
1

2

1

2 x1
x2

x3

x4

Figure 2: A finite automata.

Since all rows and columns of𝐶 are positive, byTheorems
12 and 13, any state 𝑥𝑖 ∈ 𝑋 is controllable and reachable, 𝑖 =1, 2, 3, 4.

A simple calculation gives 𝐶𝑋1 = [25 16], 𝑅𝑋1 = [7 9],𝐶𝑋2 = [5 11], 𝑅𝑋2 = [20 21],𝑀𝑋1 = [10 9], and𝑀𝑋2 =[23 21]. ByTheorems 14 and 15 and Corollary 16,𝑋1 and𝑋2
are controllable, reachable, 1-step returnable, and stabilizable,
respectively.

5. Conclusion

In this paper, we have investigated the controllability, reach-
ability, and stabilizability of deterministic finite automata by
using the semitensor product of matrices. We have obtained
the algebraic form of finite automata by expressing the
states, inputs, and outputs as vector forms. Based on the
algebraic form, we have defined the controllability matrix
for deterministic finite automata. In addition, using the con-
trollability matrix, we have presented several necessary and
sufficient conditions for the controllability, reachability, and
stabilizability of finite automata. The study of an illustrative
example has shown that the obtained new results are effective.
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