377 research outputs found

    Curriculum development in English for academic purposes: a guide to practice. Martin Guardado and Justine Light (2020). Palgrave, Cham, 134 pages, ISBN: 978-3-030-47467-6.

    Get PDF
    To facilitate learners’ development of skills needed to study in English-medium academic settings, English for Academic Purposes (EAP) came into being as an important area of English language teaching (Charles & Pecorari, 2016). Due to the rich diversity involved in EAP contexts, EAP practice encounters unique challenges. To address these challenges, curriculum design tailored to EAP is a necessity. The volume provides a timely contribution to this specific filed

    Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatogaphy Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS)

    Get PDF
    Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs), rats (RLMs), and monkeys (MLMs) by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs), rabbits (RAMs), and dogs (DLMs). Four metabolites (M1, M2, M5, and M7) were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species

    Eupatilin attenuates diabetic nephropathy by upregulating matrix metalloproteinase-9 expression in diabetic rat kidney

    Get PDF
    Purpose: To evaluate the nephro-protective effect of eupatilin in diabetic nephropathic (DN) rats.Method: Diabetes was induced by intraperitoneal administration of streptozotocin (STZ, 55 mg/kg) and confirmed by fasting blood glucose results, while DN was determined by measuring serum urea and creatinine levels on day 40 after STZ administration. The eupatilin-treated group received eupatilin at 50 and 100 mg/kg, p.o. for 20 days, after which blood levels of some biochemical parameters, glomerulosclerosis index, eosinophilic cast index, and expression of MMP-9 were determined using standard procedures.Results: Treatment with eupatilin significantly decreased serum levels of glucose, creatinine and urea, and increased creatinine clearance, compared to the negative control group. Moreover, eupatilin attenuated changes in kidney histopathology, and significantly enhanced the expression of MMP-9 in the kidney tissues of the DN rats, relative to negative control group.Conclusion: These results indicate that eupatilin attenuates renal failure in STZ-induced DN rats by upregulating the expression of MMP-9.Keywords: Eupatilin, Streptozotocin, Diabetic nephropathy, MMP-

    The effect of proteoglycans inhibited by RNA interference on metastatic characters of human salivary adenoid cystic carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Salivary adenoid cystic carcinoma (SACC) is one of the most common malignancies of salivary gland. Recurrence or/and early metastasis is its biological properties. In SACC, neoplastic myoepithelial cells secrete proteoglycans unconventionally full of the cribriform or tubular and glandular structures of SACC. Literatures have demonstrated that extracellular matrix provided an essential microenvironment for the biological behavior of SACC. However, there is rare study of the effect of proteoglycans on the potential metastasis of SACC.</p> <p>In this study, human xylosyltransferase-I (XTLY-I) gene, which catalyzes the rate-limited step of proteoglycans biosynthesis, was knocked down by RNA interference (RNAi) to inhibit the proteoglycans biosynthesis in SACC cell line with high tendency of lung metastasis (SACC-M). The impact of down-regulated proteoglycans on the metastasis characters of SACC-M cells was analyzed and discussed. This research could provide a new idea for the clinical treatment of SACC.</p> <p>Methods</p> <p>The eukaryotic expression vector of short hairpin RNA (shRNA) targeting XTLY-I gene was constructed and transfected into SACC-M cells. A stably transfectant cell line named SACC-M-WJ4 was isolated. The XTLY-I expression was measured by real-time PCR and Western blot; the reduction of proteoglycans was measured. The invasion and metastasis of SACC-M-WJ4 cells were detected; the effect of down-regulated proteoglycans on the potential lung metastasis of nude mice was observed, respectively.</p> <p>Results</p> <p>The shRNA plasmid targeting XTLY-I gene showed powerful efficiency of RNAi. The mRNA level of target gene decreased by 86.81%, the protein level was decreased by 80.10%, respectively. The silence of XTLY-I gene resulted in the reduction of proteoglycans significantly in SACC-M-WJ4 cells. The inhibitory rate of proteoglycans was 58.17% (24 h), 66.06% (48 h), 57.91% (72 h), 59.36% (96 h), and 55.65% (120 h), respectively. The reduction of proteoglycans suppressed the adhesion, invasion and metastasis properties of SACC-M cells, and decreased the lung metastasis of SACC-M cells markedly either.</p> <p>Conclusion</p> <p>The data suggested that the silence of XTLY-I gene in SACC-M cells could suppress proteoglycans biosynthesis and secretion significantly. The reduction of proteoglycans inhibited cell adhesion, invasion and metastasis of SACC-M cells. There is a close relationship between proteoglycans and the biological behavior of SACC.</p

    Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis

    Full text link
    We present a Non-parametric Network for 3D point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with trigonometric functions. Surprisingly, it performs well on various 3D tasks, requiring no parameters or training, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct Parametric Networks by simply inserting linear layers on top. Given the superior non-parametric foundation, the derived Point-PN exhibits a high performance-efficiency trade-off with only a few learnable parameters. Second, Point-NN can be regarded as a plug-and-play module for the already trained 3D models during inference. Point-NN captures the complementary geometric knowledge and enhances existing methods for different 3D benchmarks without re-training. We hope our work may cast a light on the community for understanding 3D point clouds with non-parametric methods. Code is available at https://github.com/ZrrSkywalker/Point-NN.Comment: Accepted by CVPR 2023. Code is available at https://github.com/ZrrSkywalker/Point-N

    The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo

    Get PDF
    AbstractSupranutritional selenite has anti-cancer therapeutic effects in vivo; however, the detailed mechanisms underlying these effects are not clearly understood. Further studies would broaden our understanding of the anti-cancer effects of this compound and provide a theoretical basis for its clinical application. In this study, we primarily found that selenite exposure inhibited phosphorylation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB), leading to suppression of Bcl-2 in HCT116 and SW480 colorectal cancer (CRC) cells. Moreover, the selenite-induced inhibitory effect on PKD1 activation was involved in suppression of the CREB signalling pathway. Additionally, we discovered that selenite treatment can upregulate p38 MAPK phosphorylation, which results in inhibition of the PKD1/CREB/Bcl-2 survival pathway and triggers apoptosis. Finally, we established a colorectal cancer xenograft model and found that selenite treatment markedly inhibits tumour growth through the MAPK/PKD1/CREB/Bcl-2 pathway in vivo. Our results demonstrated that a supranutritional dose of selenite induced CRC cell apoptosis through inhibition of the PKD1/CREB/Bcl-2 axis both in vitro and in vivo

    Improve Deep Forest with Learnable Layerwise Augmentation Policy Schedule

    Full text link
    As a modern ensemble technique, Deep Forest (DF) employs a cascading structure to construct deep models, providing stronger representational power compared to traditional decision forests. However, its greedy multi-layer learning procedure is prone to overfitting, limiting model effectiveness and generalizability. This paper presents an optimized Deep Forest, featuring learnable, layerwise data augmentation policy schedules. Specifically, We introduce the Cut Mix for Tabular data (CMT) augmentation technique to mitigate overfitting and develop a population-based search algorithm to tailor augmentation intensity for each layer. Additionally, we propose to incorporate outputs from intermediate layers into a checkpoint ensemble for more stable performance. Experimental results show that our method sets new state-of-the-art (SOTA) benchmarks in various tabular classification tasks, outperforming shallow tree ensembles, deep forests, deep neural network, and AutoML competitors. The learned policies also transfer effectively to Deep Forest variants, underscoring its potential for enhancing non-differentiable deep learning modules in tabular signal processing

    PP-158 Development of HIV-1 laboratory diagnostic assay based on the multiplex PCR

    Get PDF

    The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications

    Get PDF
    Diabetic retinopathy is one of the most common complications of diabetes mellitus and the leading cause of low vision and blindness worldwide. Mounting evidence demonstrates that inflammation is a key mechanism driving diabetes-associated retinal disturbance, yet the pathophysiological process and molecular mechanisms of inflammation underlying diabetic retinopathy are not fully understood. Cytokines, chemokines, and adhesion molecules interact with each other to form a complex molecular network that propagates the inflammatory and pathological cascade of diabetic retinopathy. Therefore, it is important to understand and elucidate inflammation-related mechanisms behind diabetic retinopathy progression. Here, we review the current understanding of the pathology and pathogenesis of inflammation in diabetic retinopathy. In addition, we also summarize the relevant clinical trials to further suggest inflammation-targeted therapeutics for prevention and management of diabetic retinopathy
    • …
    corecore