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Diabetic retinopathy is one of the most common complications of diabetes

mellitus and the leading cause of low vision and blindness worldwide. Mounting

evidence demonstrates that inflammation is a keymechanism driving diabetes-

associated retinal disturbance, yet the pathophysiological process and

molecular mechanisms of inflammation underlying diabetic retinopathy are

not fully understood. Cytokines, chemokines, and adhesion molecules interact

with each other to form a complex molecular network that propagates the

inflammatory and pathological cascade of diabetic retinopathy. Therefore, it is

important to understand and elucidate inflammation-related mechanisms

behind diabetic retinopathy progression. Here, we review the current

understanding of the pathology and pathogenesis of inflammation in diabetic

retinopathy. In addition, we also summarize the relevant clinical trials to further

suggest inflammation-targeted therapeutics for prevention and management

of diabetic retinopathy.
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Introduction

Diabetic retinopathy (DR) is a common microvascular complication of type 1 and

type 2 diabetes. DR is the leading cause of low vision and blindness in patients with

diabetes and can severely affect people of all ages worldwide, with a prevalence of 34.6%

(93 million) in adults aged 40 years and over (1). A systematic review focused on

population-based studies estimated that DR has an annual incidence ranging from 2.2%
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to 12.7% (2). Epidemiological evidence suggests that DR not

only increases the risk of vision impairment and blindness in

diabetic patients but also increases the risk of all-cause and

cardiovascular disease (CVD) mortality in a multi-ethnic Asian

population (3, 4).

DR is classified as nonproliferative diabetic retinopathy

(NPDR) and proliferative diabetic retinopathy (PDR)

according to the modified Airlie House Classification used in

the Early Treatment Diabetic Retinopathy Study (ETDRS) (5).

The earliest morphological sign of NPDR is the formation of

microaneurysms, in which the capillary wall expands outwards,

detected by ophthalmoscopy with blot hemorrhages (6). Further

signs of NPDR are changes in retinal blood flow and vascular

permeability, thickening of the basement membrane, loss of

pericytes, and formation of the acellular capillary. As the severity

of ischemia increases, it may develop into PDR. PDR is

characterized by the hallmark feature of pathologic retinal

neovascularization, with vitreous hemorrhage, vitreous new

blood vessels, and retinal traction detachment, which will lead

to blindness (7).

Diabetic macular edema (DME) is an important additional

classification in DR that is associated with ischemia because of the

increased permeability of retinal capillaries and microaneurysms,

resulting in extracellular fluid accumulation and normal dense

macular tissue thickening. DME can arise at any stage of NPDR

and PDR and threatens visual acuity (8). Overall, T1DM patients

tended to develop diabetic retinopathy and PDR, while T2DM

patients treated with insulin were more likely to develop DME.

The pathophysiology of DR is driven by the interaction of

many factors, among which long-term episodes of

hyperglycemia (elevated blood glucose levels) are an important

factor in diabetic patients (9). In DR patients, elevated blood

glucose levels lead to abnormal regulation of many biochemical

pathways, hyperglycemia-induced increases in the flux of

advanced glycation end products/receptors (AGE/RAGE), the

polyol pathway, protein kinase C (PKC) activation, and the

hexosamine pathway. These modifications also result in

mitochondrial failure, inflammation, and hypoxia-driven

vascular endothelial growth factor (VEGF) secretion, leading

to vascular and neuronal apoptosis, neovascularization, and

vascular permeability, respectively (10, 11). The complex

aetiology of DR reflects the various treatments currently

available, including laser photocoagulation, glucocorticoids,

vitrectomy, and drugs that neutralize VEGF. Due to painful

patient administration and long-term adverse effects, the use of

argon laser and intravitreal injection therapeutic approaches is

limited (12). There is interest in developing pharmacological

therapies for DR management conditions, such as nonsteroidal

anti-inflammatory drugs (NSAIDs) that inhibit or delete

proinflammatory molecules, anti-VEGF agents, and

antitumour necrosis factor a (TNF-a) agents (13). Therefore,
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a deeper comprehension of fundamental processes and

innovative treatments in DR is needed.

In this review, we concentrate on the involvement of

inflammation in the pathophysiology of DR and summarize

the recent advances in current and emerging treatments for DR.
Inflammation in diabetes and
diabetic retinopathy

For many years, it has been proposed that chronic tissue

inflammation may play a role in metabolic illness. Chronic

inflammatory problems in the peripheral and central nervous

systems are caused by diabetes. A substantial amount of

evidence from both patients and animal models demonstrates

that DR is a chronic low-grade inflammatory illness involving

inflammatory mediators.
Inflammation in diabetes

Type 1 diabetes (T1D) is a condition caused by autoimmune

damage or loss of functional b cell mass. Low insulin secretion

capability, self-antigen presentation, and immune-mediated

destruction are hypothesized to be the results of cytokine-driven

inflammation and other stress factors (14). Both CD4+ and CD8+

T cells are involved in the development of T1D and play a role in

the different stages of T1D to promote the destruction of

pancreatic b cells and the pathogenesis of the disease (15).

These adaptive immune cells regulate the inflammatory

response and destroy insulin-producing b cells by secreting

proinflammatory cytokines such as TNF-a, interferon g (IFN-g),
and interleukin-1 (IL-1) (16).

In addition to causing oxidative stress, oxygen species (ROS)

can stimulate the growth of macrophages and dendritic cells by

activating the nuclear factor kappa light chain enhancer (NF-kb)
pathway, activator protein-1 (AP-1), and mitogen-activated

protein kinase (MAPK) (17). Type I interferon (IFN) is a

cytokine essential for innate and adaptive immune responses.

Levels of type I interferon as well as mediated signaling were also

found to be upregulated in children at high risk for T1D and in

new-onset T1D patients (18). In b cells, activation of type I IFN

signaling leads to high expression of major histocompatibility

complex (MHC) class I, epigenetic changes, endoplasmic

reticulum (ER) stress, and induction of post-transcription and

post-translation modifications (19). This may result in the

persistent presentation of neoantigens to the immune system

and apoptosis of b cells. Innate immunity and inflammatory

mediators can impact T1D, contribute to destroying pancreatic

b cells and cause peripheral insulin resistance (20). The study of

blocking inflammatory factors such as the IFN inhibitor
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golimumab in youth with new-onset T1D has achieved some

success (21).

The pathogenesis of type 2 diabetes (T2D) is closely related to

obesity and insulin resistance, which leads to a burden on beta

cells, which eventually depletes them, leading to hyperglycemia

(22). Studies have shown that people with prediabetes have an

increase in several inflammatory markers, such as resistin,

interleukin 6 (IL-6), TNF-a, interleukin 1b (IL-1b), and

monocyte chemoattractant protein-1 (MCP-1), in their serum

and fasting glucose levels (23). As the adipose tissue increases and

as various metabolic pressures build up, the cytokines released by

the adipose tissue “Spill over”, which can create an imbalance

between cytokines that promote insulin sensitivity, including

adiponectin, leptin, and proinflammatory cytokines (24). T2D

frequently exhibits low-grade inflammation, and the maturation

of local macrophages is crucial in controlling this process. T2D-

related inflammation is characterized by an increase in

macrophages in different tissues and the simultaneous

production of TNF-a, IL-6, IL-1b, and interleukin 8 (IL-8)

cytokines (25). The underlying mechanism of insulin resistance

is also related to the inflammatory response, with activation of

inflammasomes in islet inflammatory cells impairing islet function

and viability. Additionally, it appears that the development of

diabetic ophthalmological problems involves an inflammatory

process. Inflammation is a nonspecific response to injury or

stress, including various functional and molecular mediators,

leukocyte recruitment, and/or activation (26). An acute

inflammatory response can eliminate infectious agents, but if it

persists for a long time, it may have an adverse effect.
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Inflammation, immune cell modulation, survival, and

proliferation are all impacted by toll-like receptors (TLRs),

which are the first line of defense against pathogen invasion

and identify various pathogen-associated chemical patterns (27).

The hallmark of chronic inflammation is tissue filled with

macrophages, lymphocytes, and mature B cells. As a result of

the long-term release of inflammatory factors in the tissue, these

white blood cells continue to exude from the blood vessels and

eventually accumulate in the tissue (28). Inflammatory

dysregulation can also lead to tissue and organ damage, which

promotes disease. Inflammation is involved in the development

of DR, so understanding the inflammatory process may provide

new strategies for DR therapy.
Inflammation in DR

The pathophysiology of DR is complicated, and the disease’s

fundamental processes are not fully understood. Figure 1

summarizes the key diabetes-related factors associated with the

development of T1D, T2D, and DR. Elevated intracellular glucose

levels in diabetic individuals trigger the polyol pathway, which

metabolizes glucose (29). This leads to the deposition of AGEs,

the activation of PKC, and the upregulation of AGE receptors and

the hexokinase pathway (30). It triggers oxidative stress, which

causes a rise in intracellular reactive oxygen species (ROS) and

irreparable cellular damage. A hyperglycemic environment leads

to metabolic dysfunction, oxidative stress, and the production of

ROS, such as superoxide radicals (31). Apoptosis may be caused
FIGURE 1

Schematic illustration of pathogenic mechanisms leading to pancreatic b cell damage and sight-threatening endpoints of diabetic retinopathy
(DR). In patients with diabetes, inflammation, aberrant signaling of trophic factors, and biochemical pathways are upregulated. The alterations
then enter the systemic circulation and contribute to diabetic pathology and islet inflammation by increasing levels of blood glucose and lipids
and insulin resistance.
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by mitochondrial abnormalities, hypoxia-mediated VEGF

production may be increased by inflammatory stimuli, and

VEGF is a crucial angiogenesis mediator (32). Studies have

shown that circulating mitochondrial DNA (mtDNA) levels are

associated with diabetic retinopathy, and high blood glucose-

induced mtDNA changes in early diabetes may contribute to

inflammation and diabetic retinopathy progression (33). Chronic

inflammation can result from chronic hyperglycemia and

oxidative stress, as well as other molecular mediators. Increased

levels of chemokines, including MCP-1, CCL2 and CCL5, as well

as proinflammatory cytokines, such as TNF-a, IL-1b, and IL-6,

were found in DR (34). Activated cytokines secrete intracellular

adhesionmolecules, such as ICAM-1 and VCAM-1, which attract

monocytes and leukocytes and promote a continuous

inflammatory response (35). With the accumulation of chronic

inflammation, inflammatory cells infiltrate and destroy tissues,

further aggravating retinal vascular permeability, vasodilation,

and retinal thickening in DR patients.

Inflammation plays an important role in the pathogenesis of

DR. In animal models and patients with diabetes, chronic low-

grade inflammation is widely found at different stages of DR

(36). It has been established that leukocytosis is a crucial step in

the early stages of DR and is related to adhesion molecule-

mediated leucocyte-endothelial adhesion. PDR vitreous bodies

also cause proinflammatory activation of endothelial cells. The

nuclear translocation of the proinflammatory transcription

factors NF-kB and pCREB, ROS production, disruption of

endothelial barrier integrity, E-selectin, the upregulation of

VCAM-1 and ICAM-1 and the increase in leukocyte adhesion
Frontiers in Immunology 04
were observed. Studies have found that both soluble E-selectin

and SVCAM-1 levels are elevated in diabetic retinopathy

patients and that CCL17, CCL19, and TGF b are significantly

upregulated (37, 38). It has been reported that chemokines that

regulate the attraction and activation of leukocytes have a role in

the development of DR. Patients with DR had higher levels of

chemokines such as MCP-1, macrophage inflammatory protein-

1 alpha (MIP-1 a) and MIP-1 beta (39). In addition, retinal

neuroglia dysfunction is also associated with the development

and expansion of retinal inflammation in DR (40). In general,

chronic inflammation in diabetes leads to the response

of inflammatory cells in the body, which further affects

capillary dysfunction and ultimately leads to DR. Therefore,

inflammation as a fundamental cause of DR still needs further

understanding to solve this problem. Figures 2A, B summarize

the changes caused by chronic inflammation of DR.
Inflammatory cytokines

Cytokines are a wide range of molecular families with different

structures and individual proteins known for their many roles in

the immune system. Some cytokines mediate downstream

responses through the JAK/STAT signaling pathway, such as

IL-6, and others activate the NF-kB signaling pathway, such as

IL-1 and IL-17 (41). Some cytokines have a clear role in

promoting inflammation, such as IL-1 and TNF, known as

proinflammatory cytokines, and some cytokines, such as IL-4

and IL-10, suppress proinflammatory activity, called anti-
A B

FIGURE 2

Immune regulation in diabetic retinopathy [(A): Healthy conditions; (B) DR]. Arrows indicate elevated levels or increased activity.
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inflammatory cytokines. Proinflammatory cytokines upregulate

the expression of proinflammatory genes encoding enzymes that

synthesize leukotrienes, platelet-activating factors, NO, and

prostanoids. They also participate in inducing endothelial

adhesion molecules, which are crucial for leukocyte adhesion to

the surface of endothelial cells. Thus, proinflammatory cytokines

induce inflammation, tissue damage, and dysfunction, while anti-

inflammatory factors block this process or suppress the intensity

of the inflammatory response (42).

TNF-a is a proinflammatory cytokine produced by

macrophages, natural killer cells, or T cells. It acts as an

inflammatory marker closely related to diabetes, which is linked

to metabolic disorders, including obesity and insulin resistance

(43). Diabetes causes damage to a variety of tissues associated with

this cytokine. For example, in a mouse model of type 2 diabetes,

the interaction between TNF-a and IL-6 led to cardiac endothelial

dysfunction (44); TNF-a participates in the recruitment of

monocytes and macrophages, reduces the glomerular filtration

rate through hemodynamic changes, and promotes the

progression of diabetic nephritis (45). TNF-a also plays an

important role in diabetic retinopathy. Elevated concentrations

of TNF-a have been reported in the serum, vitreous, and aqueous

humor of patients with DR (46, 47), while the level of TNF-a in

the serum is positively correlated with the severity of the disease

(48). It can increase the expression levels of endothelial nitric

oxide synthase gene and intercellular cell adhesion molecule-1

(ICAM-1) and activate nuclear actor kappa B (NF-kB).These
molecules all play a role in promoting the inflammatory

response in DR. Additionally, it has been reported that TNF-a
inhibitors reduce the inflammatory response in DR (49).

However, TNF-a induces apoptosis, thus disrupting the normal

function of the blood vessel wall and affecting the vascular

permeability of the retina. TNF-a, which is released from

Müller cells, causes apoptosis of retinal pigment epithelial cells

by activating the EGFR/p38/NF-kB/p62 pathway. In diabetic

mice, blockage of the TNF-a/EGFR axis relieves blood-retina

barrier breakdown (50). Moreover, TNF-a causes the loss of

retinal microvascular cells and promotes DR progression (51).

In general, TNF-a participates in the inflammatory response,

neovascularization and vascular reactivity.

IL-17A is a proinflammatory factor produced primarily by T

cells. IL-17A knockout reduces the levels of TNF-a, IFN-c and IL-

1b in Akita mice, suggesting that IL-17A is strongly associated

with proinflammatory cytokine-driven inflammatory responses in

diabetes progression (52). IL-17A plays a major role in increasing

the intensity of retinal inflammation, oxidative stress, and vascular

permeability in retinal disease (53). Blocking IL-17A alleviates

diabetic retinopathy in rodents (54). In in vitro culture, retinal

Müller cells display elevated expression of IL-17A and its receptor

IL-17RA, along with increased secretion of IL-17A under

hyperglycemic conditions. Meanwhile, IL-17A induced

apoptosis of Müller cells through the Act1 pathway (55).

Diabetic mice with IL-17A knockout display reduced retinal
Frontiers in Immunology 05
microvascular damage, retinal Müller cell abnormalities, and

retinal ganglion cell apoptosis, which suggests that IL-7A is

positively involved in DR pathophysiology (56). Furthermore,

through IL-17A/IL-17R to the Act1/FADD signaling cascade,

IL-17A causes degeneration of retinal capillaries and induces

apoptosis of retinal endothelial cells (52). IL-17A acts as a

proinflammatory cytokine that is primarily involved in retinal

cell apoptosis and is expected to be a potential clinical target for

the treatment of diabetic retinopathy in the future.

IL-1b is a multifunctional cytokine that promotes

inflammation. It is rarely present in the cells of healthy

individuals. Some cytokines, such as TNF-a, IL-18, and IL-1,

including IL-1b itself, induce the production of IL-1b (57).

Unlike TNF-a-induced insulin resistance, IL-1b has a direct

killing effect on islet b cells (58). The findings are that IL-1b
released by macrophages after a meal can synergize with

insulin to activate the inflammasome, which can promote

inflammation (59). In addition, IL-1b is a major trigger of the

neuroinflammatory cascade (60). IL-1b was found to be

increased in the retina of rats with diabetes as well as in the

serum of proliferative diabetic retinopathy patients (61, 62).

Studies have shown that the inflammatory status of DR is

associated with a decreased degree of tyrosine nitrosylation of

IL-1b in the vitreous (63). IL-1b damages retinal capillary

endothelial cells by activating NF-kB and increasing oxidative

stress, which can mediate mitochondrial damage, and it

accelerates this damaging process in the case of hyperglycemia

(64–66). Many studies have reported the effects of blocking IL-

1b: pituitary adenylate cyclase-activating peptide administration

reduces levels of IL-1b in rats with DR, thus protecting retinal

tissue (67); blockade of IL-1b restores islet beta cell function over

a short period or even allows some islet beta cells to regenerate

(57); IL-1 blockers are effective in many autoinflammatory

syndromes (68), suggesting their anti-inflammatory effects;

and IL-1 receptor antagonists are effective in treating many

eye diseases, such as uveitis and scleritis (69). These findings may

start a new avenue for the treatment of DR.

IL-10 is an anti-inflammatory cytokine that plays a

protective role in DR progression. Decreased IL-10 levels led

to accelerated DR development in retinas of CX3CR1-deficient

mice model (70). IL-10 improves the formation of subretinal

fibrosis under the induction of exogenous HSP70, which helps

avoid severe vision loss (71). While IL-10 acts as an anti-

inflammatory factor, several studies have reported increased

levels of IL-10 in the aqueous humor and vitreous of DR

patients (72, 73). In addition, studies have reported that IL-1b
is inversely correlated with IL-10 in the healthy population;

however, when diabetes mellitus occurs, the balance between

anti-inflammatory IL-10 and proinflammatory IL-1b is broken

(72). One possible reason for the increase in IL-10 levels is that

when inflammation occurs, IL-10 will display higher secretory

activity to offset the rise in proinflammatory cytokine levels and

prevent the development of inflammation.
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IL-6 acts as a multifunctional inflammatory factor whose

role is associated with immunomodulation, increased vascular

permeability, and stimulation of angiogenesis (74). Higher

concentrations of IL-6 were found in aqueous humor and

serum in DR patients (75). IL-6 plays a role through classic

and trans-signaling. Classic signaling exerts an anti-

inflammatory effect and has regenerative activities, while trans-

signaling is thought to be associated with proinflammatory

activities (76). It has been discovered that inhibiting IL-6

trans-signaling lessens the oxidative damage that diabetes

mellitus causes to the retina (77) and helps to minimize

vascular inflammation and endothelial barrier issues (78).

Following the activation of the IL-6 trans signaling pathway,

the expression of adhesion molecules such as ICAM-1, VCAM-1

and selectins is increased (79). By rearranging actin filaments

and altering the morphology of endothelial cells, IL-6 improves

the permeability of endothelial cells in vitro (74). In addition,

IL-6 stimulates the Jak/STAT3 pathway in the eyes, thus

inducing apoptosis by the downstream receptor NO (80).

Another important downstream effector of the STAT3

pathway is vascular endothelial growth factor (VEGF). It

mediates pathological angiogenesis and increased vascular

permeability. IL-6 can support angiogenesis by inducing VEGF

indirectly in the state of DR (81). Inhibition of IL-6 and selective

inhibition of IL-6 trans-signaling have entered clinical trials for

treating a variety of inflammatory diseases and are expected to

be a therapeutic target for DR (79).
Chemokines

Chemokines are small heparin-binding proteins that can

induce circulating leukocytes to move to inflammation or injury

sites. According to their different structures and functions,

chemokines segregate into four families, namely, CC

chemokines, CXC chemokines, CX3C chemokines, and XC

chemokines. The binding of chemokines to receptors activates

the cascade of signals, which eventually leads to the

rearrangement, shape change, and cell movement of actin (82).

MCP-1, which belongs to the CC family of chemokines,

participates in the progression of vascular inflammation in DR

and acts as a powerful chemokine for recruiting monocytes and

macrophages (83). In the hyperglycemic state, MCP-1 is

upregulated after NF-B activation, and diabetes patients may

produce a significant amount of MCP-1 from Müller cells into

the vitreous cavity and anterior chamber (84). By attracting

monocytes, higher levels of MCP-1 in the diabetic retina affect

the blood-retinal barrier and the permeability of retinal blood

vessels (85). Retinal vascular ischemia is brought on by capillary

blockage brought on by recruited leukocytes and macrophages

adhering more strongly to the vascular endothelium (86).
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MCP-1 is one of the dominant causes of blindness in patients

with DR. MCP-1 also exerts angiogenesis by inducing VEGF and

activating RhoA (87). In addition, MCP-1 induces the activation

of microglia, which release inflammatory factors, leading to the

breakdown of optic vessels and damage to retinal neurons (88).

Higher concentrations of MCP-1 have been found in vitreous

samples of patients with DR (89); although MCP-1 primarily has

an indirect impact on the progression of the illness, its

importance cannot be understated.

C-X-C motif chemokine 12 (CXCL12), also known as

stromal cell-derived factor 1 (SDF-1), is intimately linked to

the development of type 2 diabetes and associated consequences.

Patients with type 2 diabetes mellitus have increased serum

levels of SDF-1, according to reports (90). Inhibition of SDF-1 in

mice with diabetic nephritis reduces the severity of glomerular

sclerosis and prevents proteinuria (91). Higher levels of SDF-1

have also been found in the vitreous of patients with DR,

suggesting its pathogenic effect on eye lesions (92). SDF-1

promotes a firm adhesion of endothelial cells to the

endothelium of the vasculature by increasing the expression of

VCAM on endothelial cells; it also promotes the migration and

homing of endothelial progenitor cells (93). It also acts as

angiogenesis (94) with higher levels in ischemic and hypoxic

retinas. It recruits endothelial progenitor cells to ischemic

regions and synergize with VEGF and its receptor CXCR4 to

participate in angiogenesis events (95, 96), which is one of the

primary reasons why DR patients become blind. However,

recent studies have reported that the SCF-1/CXCR4 pathway

may improve DR by increasing cell activity, and further clinical

studies are still needed to confirm this hypothesis (97).

Monokine induced by interferon-g (MIG) is a CXC

chemokine expressed in multiple cell types exposed to

interferon-g. It is usually connected to the Th1 response and

directs the migration of activated lymphocytes, with an activity

that inhibits angiogenesis (98). The levels of MIG increase in the

vitreous of DR patients and are significantly related to VEGF (99).

Compared to inactive proliferative diabetic retinopathy patients,

the levels of MIG are significantly elevated in proliferative diabetic

retinopathy patients with active neovascularization (100). The

mechanism of action of MIG in DR has not yet been elucidated,

and some studies believe that there is a positive regulatory

feedback loop between MIG and VEGF, which may facilitate a

regulatory angiostatic function (100). Another hypothesis is that

MIG plays a role in the chemotaxis of leukocytes, rather than as an

angiogenic inhibitor (74). MIG is known to have higher

expression in other inflammatory diseases. MIG blockade has

been described as a prospective therapeutic target for Crohn’s

disease, and serum MIG levels represent the activity of the disease

(101); in patients with rheumatoid arthritis, the expression ofMIG

is observed in the serum, synovial fluid, and synovial tissues (102).

The inhibition of MIG in inflammatory diseases may present a
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potential therapeutic target for DR, but the feasibility remains to

be checked.

IL-8 is the most well-known CXC chemokine, which has

powerful proinflammatory properties resulting in its strict

regulation, with low or no expression in normal tissues.

Activated macrophages and monocytes release IL-8, which

encourages the directed migration of basophils, neutrophils,

and T cells. The eye effects of IL-8 vary depending on the site

of action and the source of production, and one of its surprising

effects is that it shows angiogenic activity in any part of the eye

(103). Through angiogenesis and the proinflammatory response,

IL-8 actively contributes to DR (104). Patients with proliferative

diabetic retinopathy have significantly higher vitreous and

aqueous fluid levels of IL-8 (75), which are linked to a greater

amount of large-vessel gliotic obliteration in these patients (105).

The increase in IL-8 in patients with poor visual prognosis after

vitrectomy may damage the retina by recruiting ischemic

inflammatory cells (104). Endothelial cell proliferation and

inhibition of apoptosis can both be directly induced by IL-8

(106). In response to hypoxia, periretinal cells, ciliary epithelium,

and glial cells release VEGF and/or IL-8, which stimulates the

proliferation of endothelial cells and results in intraocular

neovascularization (103). Diabetes mellitus can lead to

retinopathy and hypoxia, while activation of NF-kB under

hypoxia regulation increases the expression of IL-8 mRNA

(107), which worsens retinopathy. Overall, elevated levels of

IL-8 promote DR progression.

Fractalkine, also known as CX3CL1, is a CX3C chemokine

that interacts with the specific CX3CR1 receptor on peripheral

leukocytes such as microglia (108). Fractalkine has angiogenic

activity both in vitro and in vivo and is substantially expressed in

the vitreous of patients with proliferative diabetic retinopathy,

suggesting that it may be a key factor in the progression of the

disease (109). However, it has been shown recently that the

absence of CX3CR1 in the DR mouse model of systemic

inflammation leads to substantial perivascular clustering of

proliferating microglia in regions of fibrinogen extravasation

and increases the level of the proinflammatory factor IL-1b
(110). Additionally, retinal ganglion cell layer neuronal cell

counts in CX3CR1 deletion diabetic mice were lower, whereas

microglial cell counts were higher and the microglia were more

active (111). Microglia are resident monocytes in the retina.

Activated microglia in DR patients release various

proinflammatory mediators, including cytokines, chemokines,

glutamate, and caspases, and enhance the expansion and

migration of these mediators. These changes cause damage to

retinal neurons, leading to blindness in patients with DR (112).

While fractalkine activates the Nrf2 pathway and inhibits the

NF-B pathway to deactivate microglia, this reduces the

production of ROS and proinflammatory cytokines (113). In

summary, the fractalkine/CX3CR1 signaling pathway plays a

protective role in the diabetic retina.
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Adhesion molecules

White blood cell adherence to the microvasculature is one of

the early events of diabetic retinal inflammation. Leukocyte

adhesion accelerates the loss of endothelial cells and disrupts

the blood-retinal barrier by releasing inflammatory cytokines,

growth cytokines and vascular permeability factors (114). High

expression of cell adhesion molecules promotes the effect of

leukocyte adhesion.

Interccellular adhesion molecule 1 (ICAM-1), which is

increased in disorders such uveitis, diabetes, and age-related

macular degeneration, is crucial for the migration of white blood

cells (115). It is also the main adhesion molecule involved in DR.

Several studies have reported high expression of ICAM-1 in the

vitreous of DR patients (116–118). ICAM-1, which binds to

integrins on leukocytes, is induced by TNF-a. It can regulate the

adherence and migration of leukocytes, causing retinal

leukostasis (119). By interacting with a number of cytokines to

breakdown the blood-retinal barrier, ICAM mediates the

migration of white blood cells. Serum sICAM-1, which

improves the adhesion between white blood cells and the

vascular endothelium, is released from the outer segment of

ICAM-1 (120).

Vascular cell adhesion molecule-1 (VCAM-1), which binds

to integrin, is expressed on endothelial cells (119). It is

overexpressed in the diabetic fiber vascular membrane (118)

and is raised in conditions of hyperglycemia or hyperlipidemia

(121). TNF-a regulates the expression of VCAM-1 but has a

dual effect. It reduces the level of VCAM-1 under basal

conditions but promotes retinal endothelial activation

in response to diabetes (121). The antiangiogenic drug

conbercept has a significant inhibitory effect on VCAM-1

expression in the retina of mice with proliferative

diabetic retinopathy, which prevents retinal endothelial cell

proliferation (122). Although it is currently known that

VCAM-1 is related to endothelial function, its function in DR

is not well understood.

Elevated levels of selectin induce the aggregation of

leukocytes into the endothelial wall and then lead to retinal

leukostasis. It can be divided into three classes depending on the

expressed cell type. L-selectin, which is primarily responsible for

moving leukocytes to inflamed tissues, is expressed on

circulating leukocytes (123). Only endothelial cells express E-

selectin, and its expression is increased when cytokines or ROS

are present (124). According to reports (125), the presence of

retinopathy is associated with higher levels of soluble E-selectin.

P-Selectin (126) is expressed in endothelial cells as well as

platelets, and it is expressed more frequently in DR patients.

This process involves endothelial barrier alteration (48).

Integrins are a large group of membrane-binding proteins

with 18 a subunits and 8 b subunits in vertebrates that can form

different heterodimers. The function of integrins is to allow
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1055087
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yue et al. 10.3389/fimmu.2022.1055087
white blood cells to pass through the blood vessel walls, and they

are receptors for cell adhesion during DR development. On the

membrane of leukocytes, b2 integrin binds to ICAM-1, while

a4b1 and a4b7 bind to VCAM-1 on endothelial cells (127, 128).

Integrins make a difference in the progression of eye diseases. As

an example, integrins aVb1 and a3b1 are involved in the

infectious process of corneal tissue in allergic eye disease

(129). The pathogenic process underlying glaucoma is

significantly influenced by aVb3 integrin (130, 131). For DR,

it has been noted that patients with proliferative diabetic

retinopathy have higher amounts of avb3-, a5- and avb5-
integrins in their fibrovascular membranes (132). In the

human eye, angiogenesis can be induced through two

pathways of integrins: first, avb3 mediates angiogenesis in

models of corneal or chorioallantoic angiogenesis involving

TNF- and basic fibroblast growth factor; second, VEGF or

transforming growth factor is mostly mediated by avb5 during

angiogenesis (133). Additionally, diabetic retinopathy in an

animal model is induced by a4 integrin/CD49d, which also

facilitates leukocyte adhesion. By inhibiting the NF-B pathway,

blockade of a4 integrin/CD49d can reduce vascular leakage and

leukocyte adhesions (134). As mentioned before, b2 integrin

binds to ICAM-1 to participate in adhesion to the blood vessel

wall, induces downstream leukocyte activation and promotes

inflammation. After the activation of white blood cells, it reacts

to the increase in the expression of b2 integrin (135). In

conclusion, integrins promote the function of other adhering

molecules and cause angiogenesis in the development of DR.

Although DR is considered a microvascular disease, there is

increasing evidence that a low-grade inflammatory state of the

retina is an early manifestation of DR. Increased levels of

multiple cytokines, chemokines and adhesion molecules are

found in eye tissue of DR patients. Proinflammatory cytokines

mediate the downstream inflammatory signaling pathways,

directly promote the progress of DR. Chemokines recruit

leukocytes that secrete cytokines to inflammatory sites, making

cytokines in functional spatial position; adhesion molecules then

bind leukocytes to inflammatory sites, prolonging the action

time of functional cells. Chemokines and adhesion molecules

help cytokines to enhance inflammation indirectly. The long-

term inflammatory state makes the blood-retinal barrier

damage, retinal cell apoptosis, and ultimately leads to DR

patients’ visual loss.
Therapies targeting inflammation
in DR

Over the past decade, advances in drugs and therapies have

improved the prevention and treatment of patients with DR. The

DR preferred practice pattern recommended that regular follow-

up and necessary and appropriate retinal photocoagulation and
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vitrectomy can prevent severe visual loss in 90% of patients

(136). Retinal laser photocoagulation is an important method for

the treatment of DR and can be divided into panretinal

photocoagulation (PRP) and macular laser treatment. Frequent

laser treatment and vitreous surgery can have adverse effects on

patients, such as apoptosis of retinal pigment epithelium and

other retinal cell types and reduced vision (126).

Optical Coherence Tomography (OCT) is a non-invasive

fundus imaging device, which has great clinical significance in

the screening, diagnosis, follow-up, and evaluation of

therapeutic effect of DR. Serous retinal detachment (SRD) and

high reflectivity points (HRDs) on OCT may be related to the

anti-inflammatory effect of DME. One of the early events in the

pathogenesis of DME is microglia activation. The microglia is an

intrinsic macrophage that sits around blood vessels in the inner

layer of the retina and is involved in the maintenance of BRB. It

is the sentinel cell of the retina. The activated microglia in OCT

are seen as high reflectivity points between the retinal layers.

OCT showed an increase in interlaminar hyperreflectivity in all

diabetic patients, especially in diabetic retinopathy patients

(137). The more the number of high reflex points, the worse

the effect of anti-VEGF therapy, and the better the effect of

hormone therapy (138). SD-OCT can help to predict the visual

prognosis of DME patients. Serous retinal detachment is more

common in more severe DME, and about 30% of DME is

associated with serous retinal detachment (139). Serous retinal

detachment suggests an inflammatory factor. Hormones are

more effective against serous retinal detachment than anti-

VEGF drugs (140).

Although clinicians can use many therapeutic strategies to

treat DR, no treatment can completely attenuate clinical

progression to reverse retinal damage. More current strategies

for the treatment of DR aim to improve therapeutic efficacy, as

well as noninvasive or alternative delivery mechanisms that

provide a longer duration of action. Table 1 summarizes

existing clinical trials that have been completed to treat DR.
Control of metabolic disorders

The fluctuation of blood glucose and hypoglycemia can

aggravate ocular fundus changes, and intensive glycemic

control can prevent and delay the occurrence and progression

of DR. The Diabetes Control and Complications Trial (DCCT)

proved that intensive treatment reduced the risks of DR (148).

The burden of diabetic retinopathy may be lessened by renin-

angiotensin system (RAS) blockers. The Diabetes Retinopathy

Candesartan Trials (DIRECT) Programme (NCT00252733,

NCT00252720) evaluated whether candesartan might slow the

development and progression of retinopathy in T1D patients

(142). Although the development of retinopathy is unaffected,

candesartan may lower the incidence of retinopathy. In
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transgenic (mRen-2)27 rats, aliskiren, as a renin inhibitor,

reduced intercellular adhesion molecule-1 to control levels and

provided the same protection as ACE inhibition against

proliferative neovascularization of NPDR and oxygen-induced

retinopathy (149). RAS blockers are recommended as the first

choice for diabetic patients with hypertension, but RAS blockers

are not recommended for the prevention of retinopathy in

normotensive diabetic patients. The Action to Control

Cardiovascular Risk in Diabetes (ACCORD) study

(NCT00542178) has investigated whether intensive glycemic

control, combined therapy for dyslipidemia, and intensive

blood pressure control limit diabetic retinopathy progression

in patients with type 2 diabetes (141). This 10-year duration

study found that intensive glucose control and intensive

combination therapy for dyslipidaemia reduced the rate of

diabetic retinopathy progression.
Anti-angiogenic therapies

VEGF is an important factor involved in the pathophysiological

process of DR and DME. Hypoxia and hyperglycemia may lead to

the upregulation of VEGF, which may lead to leakage and vascular

proliferation. There is a large amount of evidence showing the

efficacy of anti-VEGF therapy in DME. Currently, bevacizumab,

aflibercept, conbercept, and pegaptanib sodium have been studied

in clinical studies as anti-VEGF medications for the treatment of

DR (Table 1). Several large randomized trials have expanded on the

initial findings of the Diabetic Retinopathy Clinical Research

Network (DRCRnet) to show that other VEGF agents

(bevacizumab, ranibizumab, and aflibercept) are also superior to

laser therapy (150). Pegaptanib sodium, an RNA aptamer targeting

VEGF-165, was approved by the Food and Drug Administration

(FDA) in 2006 and is the first VEGFA inhibitor in ophthalmology.

Pegaptanib sodium can be used in DME and appears to be well
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tolerated with evidence of efficacy, but vision is still declining in

most patients; now, it is rarely used in clinics (151).

In 2004, the FDA authorized bevacizumab as the first

antiangiogenic medication for use in the first-line treatment of

metastatic colorectal cancer (152). It is a recombinant human

IgG-1 monoclonal antibody against VEGF that prevents VEGF

from binding to VEGFR by binding to VEGF, and inhibition of

endothelial proliferation and activation leads to antiangiogenic

and antitumour effects. In large clinical trials, ranibizumab has

been shown to be effective and safe in DR treatment, improving

DR severity in both NPDR and PDR (153). The researchers

investigated the relative effectiveness and safety of glass

injections of aflibercept, bevacizumab, and ranibizumab in the

treatment of DME. In patients with central involvement of

DME, it was discovered that vitreous injections of aflibercept,

bevacizumab, and ranibizumab enhanced visual acuity and

decreased retinal thickness, although the proportionate benefit

depended on baseline eyesight (154).. At a lower initial level of

vision, aflibercept was more effective at improving vision. In the

DRCR Retina Network trial, which involved moderate vision

loss due to DME, the team did not find that over a two-year

period, there was a significant difference in visual outcome

between aflibercept monotherapy and bevacizumab treatment,

and in the event of a poor response, aflibercept may be

preferred (155).

Conbercept is the first new biological class I drug with

independent intellectual property rights in China and has been

given the World Health Organization’s (WHO) international

generic name. As a new generation of anti-VEGF fusion

proteins, conbercept can inhibit choroidal angiogenesis and

reduce the leakage of new blood vessels (156). At the time of

the phase III trial, subjects were unable to schedule treatment

every 8 weeks or 12 weeks because of the COVID-19 outbreak,

and several studies are still recruiting patients. However, the

limitations and adverse effects of anti-VEGF therapy have also
TABLE 1 Completed clinical trials of drug treatments in patients with diabetic retinopathy.

Intervention Pathways Completed clinical trials

Metabolic control (Hypoglycemic
Agents, Fenofibrate, Aliskiren)

Insulin signaling,
RAAS

NCT00542178 (141), NCT00768040, NCT00252733 (142), NCT00252720 (142)

Ruboxistaurin PKCb signaling NCT00266695, NCT00090519, NCT00604383 (143)

Bevacizumab, Ranibizumab,
Aflibercept, Conbercept,
Pegaptanib Sodium

VEGF signaling NCT01100307, NCT01270542, NCT01908816, NCT01363440, NCT00682539, NCT01661946, NCT00548197,
NCT02834663, NCT01988246, NCT01594281, NCT00996437, NCT02366468, NCT02816710, NCT01854593,

NCT02718326 (144), NCT01069341, NCT02858076, NCT01805297, NCT00606138, NCT00445003,
NCT00745498, NCT01189461, NCT03126786, NCT02949024, NCT03917472, NCT02863354, NCT05414149

Intravitreal steroids(Triamcinolone
acetonide, Dexamethasone);
NSAID; Antibiotics(doxycycline
monohydrate);
Immunosuppressants

Inflammation NCT01853072 (145), NCT00444600, NCT01571232, NCT00917553, NCT00511875, NCT00711490,
NCT00782717, NCT01872611 (145), NCT00105404, NCT00367133, NCT02443012, NCT03608839,
NCT00229931, NCT00369486, NCT01892163, NCT02511067, NCT02842541 (146), NCT01609881

Emixustat Hydrochloride Visual cycle
isomerohydrolase

NCT02753400 (147), NCT00412451
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received much attention. Because anti-VEGF drugs have a short

half-life, they need to be injected monthly or every two months

to ensure efficacy. In patients receiving anti-VEGF, conjunctival

hemorrhage, eye discomfort, cataract, vitreous detachment,

vitreous floaters, and elevated intraocular pressure were

the most frequently reported side effects (5%) (157).

Endophthalmitis and retinal detachment may occur after

intravitreal injection. There are also studies to improve

injection methods, such as the Port Delivery System (PDS),

which is a permanent, repeatable, and small-size eye implant

that can deliver custom-formulated ranibizumab over several

months. There is potential to reduce the treatment burden of

frequent eye injections. In phase 2 trials, PDS was generally well

tolerated, reducing the burden of therapy for individuals with

neovascular age-related macular degeneration (nAMD) while

maintaining visual acuity (158).
Anti-inflammatory therapies

Several studies have demonstrated that inflammation is

involved in the pathogenesis of DR. Therefore, anti-

inflammation is not only an effective supplement to DR

therapy but also an important treatment for some patients

who are ineffective or resistant to anti-VEGF therapy. Before

the use of VEGF drugs, intravitreal glucocorticoid therapy was

popular among treating physicians. Steroids reduce neutrophil

migration, restrict access to inflammatory sites, and reduce

cytokine production (159, 160). In the nonproliferative phase

of DR, DME is the main cause of visual impairment.

Dexamethasone vitreous implants have been effective in

treating DME indications since the FDA was approved in 2014

(161). The Chinese phase III study of dexamethasone intravitreal

implants (DEX-I) for DME patients enrolled 284 Asian patients

from 18 centers, and the visual acuity, macular edema thickness,

and leakage area of patients treated with DEX-I were better than

those treated with laser photocoagulation. Although

glucocorticoids such as triamcinolone acetonide and

dexamethasone implants have also been shown to reduce

ret inal thickening and improve vis ion, the use of

glucocorticoids for intravitreal treatment increases the risk of

cataract surgery and can lead to elevated intraocular pressure

and glaucoma (162). Therefore, the complications of high

intraocular pressure and cataract formation should be

considered in vitreous glucocorticoids.

Non-steroidal anti-inflammatory drugs (NSAIDs) can

reduce damage to the DR retina by inhibiting the expression

of inflammatory factors and nonsteroidal anti-inflammatory

drug mediators to control the retinal inflammatory reaction.

Several studies assessing the effect of localized NSAIDs on

diabetic retinopathy have reported improvements in fovea

thickness and vision at approximately four to six months

(163). Nepafenac ophthalmic (Nevanac, Alcon), the first eye
Frontiers in Immunology 10
NSAIDS product authorized by the FDA in 2005, is used to

relieve pain and inflammation associated with cataract surgery.

After being given to the eye, nepafenac can pass through the

cornea quickly and transform into aminophenic acid under the

influence of ocular tissue hydrolase, which can quickly reach the

target location to suppress the activation of caspase-3 and -6 in

the retina (164, 165). Nepafenac 0.3% showed superior clinical

outcomes than vehicles in two prospective, randomized,

multicenter, double-masked, phase 3 trials in patients with

DR, with better BCVA after cataract surgery and no

unexpected adverse events (145). NSAIDS has definite clinical

efficacy and high safety. The adverse reactions disappear

automatically after discontinuation of NSAIDS and do not

affect the efficacy. However, NSAIDS can cause corneal

melting and even perforation, which should be given more

attention. The use of NSAIDS in patients with autoimmune

diseases, eye diseases, and other diseases should be done

with caution.

IL-6 has been investigated as a viable target for anti-

inflammatory treatment of DR since it is one of the most

significant proinflammatory cytokines in the vitreous of

patients with DR. Some clinical trials have led to the

development of antibodies against IL-6 (EBI-031) and the IL-6

receptor (tocilizumab). The safety, tolerability, and effectiveness

of tocilizumab, a recombinant humanized anti-human

interleukin-6 (IL-6) receptor monoclonal antibody, have been

examined in clinical studies in eyes with DME (NCT02511067).

Clinical research (NCT02842541) is evaluating the safety,

tolerability, immunogenicity, and pharmacokinetics of up to

three dosage levels of EBI-031 administered intravitreally to

participants with diabetic macular edema (NCT02842541).

The interventional study found that ketorolac (Acuvail®)

concentrations (0.45%) significantly reduced the levels of

aqueous IL-8, vitreous IL-8, and platelet-derived growth factor

(PDGF) AA in 20 eyes from 20 patients, which suggests that it

may induce significant inhibition of inflammatory cytokines

involved in the pathogenesis of DR (146).

Vascular adhesion protein-1 (VAP-1) regulates leukocyte

adhesion and has semicarbazide-sensitive amine oxidase (SSAO)

functions to affect oxidase activity, catalyzing oxidative

deamination to produce hydrogen peroxide and aldehydes,

leading to the production of AGEs and ALEs (166). PXS-4728A

is mainly used in the treatment of cardiometabolic diseases. In

acute lung inflammation, PXS-4728A, as a recently reported

SSAO inhibitor, was used in the treatment of cardiometabolic

diseases. In acute lung inflammation, PXS-4728A reduced

CXCL1/KC-induced leukocyte rolling and adhesion (167). In

arteriosclerosis, PXS-4728A reduced oxidative stress and the

expression of adhesion molecules, chemoattractant proteins and

proinflammatory cytokines in the aorta, and it also inhibited the

adhesion and migration of monocytes in human umbilical vein

endothelial cells (168). Currently, a clinical study that tested the

safety and efficacy of BI 1467335 (PXS-4728A) has shown some
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improvement in patients with DR, with no increase in adverse

events (NCT03238963).

Montelukast, a leukotriene receptor antagonist, revealed a

protective impact on vision in a streptozotocin-induced diabetes

mouse model by inhibiting diabetes-induced capillary and

neuronal degeneration (169). Drug blockade of the leukotriene

pathway holds the potential for new therapies to prevent or slow

diabetic retinopathy development. At present, there is no clinical

evaluation in the treatment of DR.

Connexin43 translucency plays a role in the pathogenesis of

chronic inflammatory diseases, including activation of the

inflammasome pathway, and sanguinarine blockade has been

shown to alleviate vascular leakage and inflammation (170, 171).

Hyperglycemia and inflammation increased Connexin43

expression in both the Akimba (DR) mouse retinas and the

donor retina with confirmed DR (172). Tonabersat, a connexin

hemichannel blocker, can inhibit NLRP3 and lysed Caspase-1

complex formation with hyperglycemia and cytokine activation

while preventing the release of the proinflammatory

cytokines IL-1b, VEGF, and IL-6 (173). Tonabersat reduced

retinal inflammation by modulating the assembly of the

inflammasome (NLRP3) through Connexin43 translucent

blockade while preserving retinal photoreceptor function and

restoring vascular integrity (174). Tonabersat has the potential

to improve some functional outcomes in diabetic retinopathy

and is a potential therapeutic agent.

AKST4290, an inhibitor of CC chemokine receptor-3

(CCR3), is a natural receptor for eotaxin. Wet age-

related macular degeneration (wet AMD), as well as other

neurological and immunological illnesses, is mostly a result of

the pathophysiology of inflammation, immune cell recruitment,

and neovascularization, which is regulated by CCR3 (175). The

oral medication AKST4290, which works well in preventing

eotaxin from attaching to its G-protein coupled receptor

(GPCR) CCR3, increased the age-related macular degeneration

BCVA score (176). The effectiveness of oral AKST4290 in

patients with moderate to severe diabetic retinopathy (CAPRI)

is currently being studied (NCT05038020).
Other therapeutic agents

At present, there are a number of drugs being studied for the

treatment of DR. First, Runcaciguat, which has been studied

from diabetes-related diseases. Runcaciguat (BAY1101042), as a

sGC activator, may be an expansive therapeutic option for the

prevention of CKD associated with hypertension, diabetes, and

obesity (177, 178), which is currently in a phase II clinical

trial (NCT04722991).

To develop some visual mechanisms, a nonretinoic acid

small molecule called emixustat hydrochloride inhibits RPE65,

also known as retinol isomeric hydrolase, which is a 65 kDa

protein found in the retina (179). In 23 PDR patients with or
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without DME, the effects of oral emixustat hydrochloride on

proangiogenic and inflammatory cytokines (levels of IL-1, IL-6,

IL-8, TGF-1, and VEGF) were assessed. VEGF levels were

marginally lower in the emixustat hydrochloride group,

although this preliminary investigation did not demonstrate a

statistically significant difference in changes in aqueous humor

cytokine levels between the emixustat hydrochloride group and

the placebo group(NCT02753400) (147). OTT166 is a novel

small-molecule-selective integrin inhibitor specifically designed

by OcuTerra Therapeutics, Inc. to have the required

physicochemical properties to reach the retina from eye drops

(180). OTT166 is currently being given in a phase II clinical trial

in diabetic retinopathy patients (NCT05409235).

In addition, fenofibrate is a peroxisome proliferator-activated

receptor alpha activator (PPARa) involved in the regulation of

lipid metabolism disorder, inflammation, oxidative stress,

angiogenesis and apoptosis, which reduces the progression of

DR (181). It was found that PPARa was downregulated in

diabetic retinas, which may be partly due to the overexpression

of microRNA-21 (miR-21). In db/dbmice, knockdown of miR-21

prevented PPARa downregulation, alleviated microvascular

damage, and improved neovascularization and inflammation of

the retina (182).
Concluding remarks and
future perspectives

Anti-inflammatory approaches targeting certain molecular

markers might be viable treatment options for DR since

inflammation is now recognized as a significant contributor to

the onset and progression of DR. Cytokines, chemokines and

adhesion molecules participate in the inflammatory process of

diabetic retinopathy. Three types of molecules interact and are

inseparable, forming a complex molecular network that

promotes the pathological process of diabetic retinopathy

(Figure 3). Cytokines are divided into proinflammatory and

anti-inflammatory cytokines according to their function. When

inflammation occurs, the levels of proinflammatory cytokines

are upregulated, promoting inflammatory responses through a

variety of pathways, such as retinal cell apoptosis and

angiogenesis. Anti-inflammatory cytokines may also reach a

higher level to counteract the protective effect of the

inflammatory response. Chemokines, as the transport

intermediary of cells, induce circulating leukocytes to reach

inflammatory sites. Adhesion molecules help white blood cells

adhere to inflammatory sites. Three types of molecules perform

their own functions, while an increase in the level of one type of

molecule also induces the expression of another type of molecule

in an inflammatory state; for example, the cytokine TNF-a
upregulates the level of the adhesion molecule VCAM-1. The

complex pathological mechanism has not yet been elucidated

and needs further study in the future. In the future, the immune
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inflammation mechanism of DR can be further studied to

provide insight into the biological function of DR and related

targeted therapies. Therefore, these findings imply the clinical

importance of new therapies targeting inflammatory responses

in the management of DR and facilitate the transfer of recent

research findings from ‘bench to bedside’ in the future.
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