352 research outputs found

    Mechanical properties of polycrystalline graphene based on a realistic atomistic model

    Full text link
    Graphene can at present be grown at large quantities only by the chemical vapor deposition method, which produces polycrystalline samples. Here, we describe a method for constructing realistic polycrystalline graphene samples for atomistic simulations, and apply it for studying their mechanical properties. We show that cracks initiate at points where grain boundaries meet and then propagate through grains predominantly in zigzag or armchair directions, in agreement with recent experimental work. Contrary to earlier theoretical predictions, we observe normally distributed intrinsic strength (~ 50% of that of the mono-crystalline graphene) and failure strain which do not depend on the misorientation angles between the grains. Extrapolating for grain sizes above 15 nm results in a failure strain of ~ 0.09 and a Young's modulus of ~ 600 GPa. The decreased strength can be adequately explained with a conventional continuum model when the grain boundary meeting points are identified as Griffith cracks.Comment: Accepted for Physical Review B; 5 pages, 4 figure

    Graphene edge from A to Z - and the origins of nanotube chirality

    Full text link
    The energy of arbitrary graphene edge is derived in analytical form. It contains a "chemical phase shift", determined by the chemical conditions at the edge. Direct atomistic computations support the universal nature of the relationship. Definitive for graphene formation, shapes of the voids or ribbons, this has further important implications for nanotube chirality selection and control by chemical means, at the nucleation stage.Comment: 12 pages, 3 figure

    Development and operation of research-scale III-V nanowire growth reactors

    Full text link
    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy (MOVPE) reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2 X 109^{-9} Torr. A load-lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm2^2(V.s).Comment: Related papers at http://pettagroup.princeton.ed

    Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain

    Full text link
    A (10x10) single-walled carbon nanotube consisting of 400 atoms with 20 layers is simulated under tensile loading using our developed O(N) parallel tight-binding molecular-dynamics algorithms. It is observed that the simulated carbon nanotube is able to carry the strain up to 122% of the relaxed tube length in elongation and up to 93% for compression. Young s modulus, tensile strength, and the Poisson ratio are calculated and the values found are 0.311 TPa, 4.92 GPa, and 0.287, respectively. The stress-strain curve is obtained. The elastic limit is observed at a strain rate of 0.09 while the breaking point is at 0.23. The frequency of vibration for the pristine (10x10) carbon nanotube in the radial direction is 4.71x10^3 GHz and it is sensitive to the strain rate.Comment: 11 pages, 8 figure

    Multi-shell gold nanowires under compression

    Full text link
    Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc(111) structures at T=0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T=300 K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure

    Atomistic Simulations of Nanotube Fracture

    Full text link
    The fracture of carbon nanotubes is studied by atomistic simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The rangle of fracture strians compares well with experimental results, but predicted range of fracture stresses is marketly higher than observed. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. The results show moderate dependence of fracture strength on chirality.Comment: 12 pages, PDF, submitted to Phy. Rev.

    Extreme structure and spontaneous lift of spin degeneracy in doped perforated bilayer graphenes

    Get PDF
    Extreme structure and spin states of doped and undoped perforated bigraphenes was studied using DFT simulations. It was found that folded nanopores possess extremely high curvature of 0.34 Å−1. Dramatic structural deformation causes severe changes of the chemical properties of carbon atoms localized at the nanopores converting the folded edges to local oxidative fragments. It was found that asymmetrical coordination of either Li, Ca, or Al to the nanopores is coupled with electron transfer from metal to edge carbon atoms and breakdown of local inversion symmetry. Li-, Ca-, and Al-doped perforated AA bigraphene revealed ferromagnetic spin ordering with magnetic moments of 0.38, 0.14, and 0.32μB/unit cell, respectively, and spin polarization energy gain of 0.037eV for Ca-doped superlattice. It was shown that ferromagnetic spin ordering of bigraphene nanopores contradicts to the Nagaoka's theorem, which excludes strong electron correlations as a reason of spin polarization. Spontaneous lift of spin degeneracy was interpreted in terms of perturbing intense local electrostatic fields from extra electron charges localized at the nanopore edges, coupled with breakdown of space inversion and local translation invariances. It was shown that spin energy splitting is proportional to the matrix elements calculated on Bloch states with opposite wavevectors and perturbing electrostatic fields

    Optoelectronic properties of a photosystem I - carbon nanotube hybrid system

    Full text link
    The photoconductance properties of photosystem I (PSI) covalently bound to carbon nanotubes (CNTs) are measured. We demonstrate that the PSI forms active electronic junctions with the CNTs enabling control of the CNTs photoconductance by the PSI. In order to electrically contact the photoactive proteins, a cysteine mutant is generated at one end of the PSI by genetic engineering. The CNTs are covalently bound to this reactive group using carbodiimide chemistry. We detect an enhanced photoconductance signal of the hybrid material at photon wavelengths resonant to the absorption maxima of the PSI compared to nonresonant wavelengths. The measurements prove that it is feasible to integrate photosynthetic proteins into optoelectronic circuits at the nanoscale

    Nonlinear resonance in a three-terminal carbon nanotube resonator

    Full text link
    The RF-response of a three-terminal carbon nanotube resonator coupled to RF-transmission lines is studied by means of perturbation theory and direct numerical integration. We find three distinct oscillatory regimes, including one regime capable of exhibiting very large hysteresis loops in the frequency response. Considering a purely capacitive transduction, we derive a set of algebraic equations which can be used to find the output power (S-parameters) for a device connected to transmission lines with characteristic impedance Z0Z_0.Comment: 16 pages, 8 figure
    corecore