164 research outputs found

    Neurological Manifestations in Behcet Disease

    Get PDF

    Somatic embryogenesis in Abies nebrodensis, an endangered Sicilian fir

    Get PDF
    Somatic embryogenesis, as a promising biotechnological tool for many conifer trees, has never been applied for the Abies nebrodensis species. Although all the encouraging results previously obtained by the EU LIFE (European LIFE program) funded projects in over ten years, the critically endangered Sicilian fr remains alarmingly close to extinction. In this study, we reported the first protocol of somatic embryogenesis obtained from mature zygotic embryos of the Abies nebrodensis. Seeds from Abies adult trees with specifc identifcation numbers (IN) were collected and full seeds were identifed by X-ray. Diferent experiments were carried out for callus initiation, from both zygotic immature and mature embryos, testing diferent culture media. The immature embryos did not give embryogenic tissue (ET). Embryogenic callus (EC) was successfully induced from mature embryos with variable frequencies (0–40%). Schenk and Hilderbrandt (SH) was the most suitable initiation medium where the obtained callus initiation rate reached up to 40% for IN7 (frst experiment). 6-benzylaminopurine (BAP) showed to be essential to induce EC (second experiment). IN8 presented the highest callus initiation rate (40%) among all tested donor trees, whereas IN13 recorded the lowest rate with 4% (third experiment). ET maturation from each singular embryo of IN7, IN8, IN10 and IN21 was successfully achieved in SH medium containing 37,83 µM abscisic acid (ABA), 8% of polyethylene glycol (PEG-4000) and 4% maltose. The encapsulation technology was assessed on the obtained ET and its proliferation was observed after encapsulation

    Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics

    Get PDF
    Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with Kms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit

    Identification of multiple root disease resistant wheat germplasm against cereal nematodes and dryland root rot and their validation in regions of economic importance

    Get PDF
    História da literatura portuguesa coordenada por Giulia Lanciani - primeiras páginas de um total pp. 7-108)História literária do século XVIII portuguêsGoverno de Portuga

    Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity

    Get PDF
    Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4). All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3 also accepts a wide range of substrates but with very strong preference for producing benzyl acetate. Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating 268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the multiplicity of AAT genes accounts for the great diversity of esters formed in melon

    Climbing walls, making bridges: children of immigrants’ identity negotiations through capoeira and parkour in Turin.

    Get PDF
    Capoeira and parkour are two different body practices which have gained worldwide attention in urban settings in the last few decades. The following paper will explore how capoeira and parkour relate to the construction of identity paths amongst children of immigrants between 12 and 20 in Turin, Italy. It will do so by looking at how such practices are used by young men of migrant origin to negotiate and perform narratives of self-worth, belonging and recognition within marginalising and excluding urban environments. This study acknowledges that social identifications are created, negotiated and (re)produced through bodily and spatial means and within networks of power relations. Following this premise, the insights proposed in this paper suggest that the ambivalent and fluid use of bodies and spaces implied by capoeira and parkour can represent a meaningful lens to understand the embodied and spatial identity negotiations enacted by participants in their daily lives. This theoretical perspective will illuminate the place that active bodies, spaces and leisure practices take in the negotiation of social identities, and dynamics of inclusion/exclusion, enacted by youth of migrant origin within early twenty-first century Turin cityscape

    An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Get PDF
    Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family
    corecore