242 research outputs found

    Research on Core Essential Elements for O2O Business Model with ANP

    Get PDF
    The O2O is a fast-growing emerging business model, the O2O business model framework is established and the most basic 7 major elements are identified in our research with Value Net theory as follow: customer, telecom operator, content provider, service provider, software provider, third-party payment platform and offline business entity. Then, we apply the Delphi method to identify 8 secondary elements and 22 three-level elements of O2O business model, and the O2O business model core essential elements evaluation model is also established. We analyze the model systematically and find out 10 core elements with Analytic Network Process (ANP) as follow: network speed and stability, mining the customer subject requirements, customer insight, control the trading risk, the core technology research and development, the life service payment platform, after payment platform, financial services platform development, the detonation of the fulfilled requirements and direct correlation between the maintenance of the enterprise. The 10 elements mainly concentrated in 4 dimensions as follow: customer, telecom operators, software providers and third-party payment platform. We hope that our research can provide enlightenment to O2O enterprise\u27s development and the future trend analysis, and be helpful for all participants of Value Net achieve win-win symbiosis

    Responses and sensitivities of maize phenology to climate change from 1971 to 2020 in Henan Province, China.

    Get PDF
    Climate change affects many aspects of the physiological and biochemical processes of growing maize and ultimately its yield. A comprehensive climate suitability model is proposed that quantifies the effects of temperature, precipitation, solar radiation, and wind in different phenological stages of maize. It is calibrated using weather and yield data from China's Henan Province. The comprehensive suitability model showed the capability of correctly hindcasting observed temporal and spatial changes in maize phenology in response to climatic factors. The predicted yield based on the suitability model can well match the recorded field yield very well from 1971-2020. The results of correlation showed that the yields are more closely related to multi-weather factors, temperature and precipitation than to solar radiation and wind. The sensitivity analysis illustrates that temperature and precipitation are the dominant weather factors affecting yield changes based on a direct differentiation method. The comprehensive suitability model can provide a scientific support and analysis tool for predicting grain production considering climate changes

    On the performance of a mixed RF/MIMO FSO variable gain dual-hop transmission system

    Get PDF
    In this work, we propose a mixed radio frequency (RF) and multiple-input-multiple-output (MIMO) free-space optical (FSO) system based on a variable-gain dual-hop relay transmission scheme. The RF channel is modeled by Rayleigh distribution and Gamma–Gamma turbulence distribution is adopted for the MIMO FSO link, which accounts for the equal gain combining diversity technique. Moreover, new closed-form mathematical formulas are obtained including the cumulative distribution function, probability density function, moment generating function, and moments of equivalent signal-to-noise ratio of the dual-hop relay system based on Meijer’s G function. As such, we derive the novel analytical expressions of the outage probability, the higher-order fading, and the average bit error rate for a range of modulations in terms of Meijer’s G function. Furthermore, the exact closed-form formula of the ergodic capacity is derived based on the bivariate Meijer’s G function. The evaluation and simulation are provided for system performance, and the effect of spatial diversity technique is discussed as well

    Effects of thermal process conditions on crystallinity and mechanical properties in material extrusion additive manufacturing of discontinuous carbon fibre reinforced polyphenylene sulphide composites

    Get PDF
    This study investigates the thermal behaviour of discontinuous carbon fibre reinforced polyphenylene sulphide (CF/PPS), additively manufactured by material extrusion, with a focus on the effects of thermal process conditions on the degree of crystallinity, oxidation crosslinking and mechanical properties of CF/PPS from filament fabrication, material extrusion to annealing treatment. The screw extrusion parameters are optimised by performing a thermal analysis of the fabricated filaments. The effect of crosslinking reactions on the crystallinity process in determining the mechanical properties of the printed samples is illustrated by investigating the influence of the printing conditions. Furthermore, the effect of annealing treatment on the semi-crystalline polyphenylene sulphide (PPS) is studied by measuring the degree of crystallinity and viscoelasticity behaviours. Results demonstrate that the flexural properties of the printed CF/PPS composites at elevated processing temperatures are determined by the oxidation crosslinking between PPS chains. These enhance the crystallisation process of semi-crystalline polymers by acting as the nucleating agent first but negatively affect the mechanical properties at higher temperatures because of the detrimental effects of the polymer inter-chain bonding. The maximum flexural strength of printed CF/PPS reached 164.65 MPa when processing at an extrusion temperature of 280°C, a printing temperature of 320°C, and an annealing temperature of 130°C for 6 h. By adjusting the thermal treatment conditions, the degree of the crystallinity and the mechanical properties of the printed CF/PPS composites can be designed, controlled and tailored

    Isolation and Functional Determination of SKOR Potassium Channel in Purple Osier Willow, Salix purpurea.

    Get PDF
    Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.Peer Reviewe

    CNV discovery for milk composition traits in dairy cattle using whole genome resequencing

    Get PDF
    General statistics of 487 differential CNVRs between high and low group based on UMD3.1. (XLSX 28 kb

    Sound field separation method for motorcycle coherent sound sources

    Get PDF
    To solve the problem of main noise sources of motorcycles running at high speed, especially restoring the free sound field information of the target sound source in the non-free sound field, direct separation method with single holographic surface is proposed. According to the transfer function relationship between the theoretical and the measured sound pressure on the holographic surface based on the wave superposition algorithm, the individual radiation information of the target sound source in the coherent sound field is obtained. Through numerical simulation, it is found that the method could effectively separate the coherent sources. The radiation sound of motorcycles engine speed at 6000 r/min is measured, and the results show that the direct sound field separation method can effectively separate the coherent sound sources and intake noise radiate the higher pressure amplitude

    Improving Language Model-Based Zero-Shot Text-to-Speech Synthesis with Multi-Scale Acoustic Prompts

    Full text link
    Zero-shot text-to-speech (TTS) synthesis aims to clone any unseen speaker's voice without adaptation parameters. By quantizing speech waveform into discrete acoustic tokens and modeling these tokens with the language model, recent language model-based TTS models show zero-shot speaker adaptation capabilities with only a 3-second acoustic prompt of an unseen speaker. However, they are limited by the length of the acoustic prompt, which makes it difficult to clone personal speaking style. In this paper, we propose a novel zero-shot TTS model with the multi-scale acoustic prompts based on a neural codec language model VALL-E. A speaker-aware text encoder is proposed to learn the personal speaking style at the phoneme-level from the style prompt consisting of multiple sentences. Following that, a VALL-E based acoustic decoder is utilized to model the timbre from the timbre prompt at the frame-level and generate speech. The experimental results show that our proposed method outperforms baselines in terms of naturalness and speaker similarity, and can achieve better performance by scaling out to a longer style prompt.Comment: Submitted to ICASSP 202
    • …
    corecore