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Abstract

Background: Copy number variations (CNVs) are important and widely distributed in the genome. CNV detection
opens a new avenue for exploring genes associated with complex traits in humans, animals and plants. Herein, we
present a genome-wide assessment of CNVs that are potentially associated with milk composition traits in dairy cattle.

Results: In this study, CNVs were detected based on whole genome re-sequencing data of eight Holstein bulls from
four half- and/or full-sib families, with extremely high and low estimated breeding values (EBVs) of milk protein
percentage and fat percentage. The range of coverage depth per individual was 8.2–11.9×. Using CNVnator, we
identified a total of 14,821 CNVs, including 5025 duplications and 9796 deletions. Among them, 487 differential
CNV regions (CNVRs) comprising ~8.23 Mb of the cattle genome were observed between the high and low
groups. Annotation of these differential CNVRs were performed based on the cattle genome reference assembly
(UMD3.1) and totally 235 functional genes were found within the CNVRs. By Gene Ontology and KEGG pathway
analyses, we found that genes were significantly enriched for specific biological functions related to protein and
lipid metabolism, insulin/IGF pathway-protein kinase B signaling cascade, prolactin signaling pathway and AMPK
signaling pathways. These genes included INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16, ART3, SNCA and WNT7A,
implying their potential association with milk protein and fat traits. In addition, 95 CNVRs were overlapped with
75 known QTLs that are associated with milk protein and fat traits of dairy cattle (Cattle QTLdb).

Conclusions: In conclusion, based on NGS of 8 Holstein bulls with extremely high and low EBVs for milk PP and
FP, we identified a total of 14,821 CNVs, 487 differential CNVRs between groups, and 10 genes, which were suggested
as promising candidate genes for milk protein and fat traits.
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Background
In dairy cattle, milk yield and composition are the most
important economic traits. Compared with traditional
dairy cattle breeding programs, DNA-based marker-
assisted selection has obvious advantages to shorten gen-
eration interval and enhance the accuracy of selection.
There are several main strategies of identifying the genes
with large genetic effects on milk production traits,
including marker-QTL linkage analysis (LA), candidate

gene approach, genome-wide association analysis (GWAS)
and next-generation sequencing (NGS). Many studies
have been performed to investigate milk production traits
in dairy cattle [1–15].
Copy number variations (CNVs) are DNA segments

that are 1 kb or larger and present at variable copy num-
ber in comparison with a reference genome [16]. CNVs
are widely distributed in the genome [17]. As a comple-
mentary genetic variant to single nucleotide polymor-
phisms (SNPs), CNVs have attracted increasing attention
in recent years. Compared with the SNP, CNV can affect
a larger portion of the genome and cause effects, like
changing gene structure and dosage, altering gene

* Correspondence: sundx@cau.edu.cn
1Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture,
National Engineering Laboratory of Animal Breeding, College of Animal
Science and Technology, China Agricultural University, Beijing 100193, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gao et al. BMC Genomics  (2017) 18:265 
DOI 10.1186/s12864-017-3636-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81711776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3636-3&domain=pdf
mailto:sundx@cau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


regulation and exposing recessive alleles [18]. CNVs are
also associated with various diseases [19, 20] and may
contribute to a fraction of the missing heritability [21, 22].
Along with the development of large-scale CNV studies in
human [16], substantial progress has been made in the
CNV identification in domestic animals, including cattle
[13, 23–34], dog [35–37], sheep [38], goat [39], chicken
[40, 41] and pig [42–44]. So far, there are four mecha-
nisms known to allow formation of CNV, i.e., non-allelic
homologous recombination (NAHR), non-homologous
end joining (NHEJ), fork stalling and template switching
(FoSTeS) and retrotransposition [18, 45]. In addition,
previous studies also suggested that segmental duplica-
tions (SDs) are one of the catalysts and hotspots for
CNV formation [46, 47].
Traditionally, there were two array-based methods for

CNV discovery, array comparative genomic hybridization
(aCGH) and SNP arrays [48, 49]. Although they promoted
the progress of CNV studies, these two array-based
methods have limitations [50, 51]. They cannot detect
small CNVs [52]. In addition, it is also a great challenge
for microarrays to detect CNVs in the SD regions due to
insufficient coverage [53] although customized chips can
be designed to cover SDs.
Recently, the advent of next-generation sequencing

(NGS) technology has sped up the study of CNV [23, 27,
28, 54]. Four basic strategies have been applied for
detecting CNVs with NGS data in the 1000 Genomes
Project pilot studies [55]. Read pair (RP or paired-end
mapping) method [56, 57] analyzes discordant mapping
pairs of clone reads or high-throughput sequencing frag-
ments whose distances are different from the normal
average insert size. Read-depth (RD) [58–60] analysis
detects CNVs based on the read depth-of-coverage, i.e.,
the density of aligned reads along the chromosomes. A
random distribution (Poisson distribution or corrected
Poisson distribution) is assumed first in this method.
Based on the depth-of-coverage, CNVs are detected with
duplication regions showing high coverage, while dele-
tion regions show low coverage. Split-read (SR) [59, 61]
analysis can evaluate gapped sequence alignments for
CNV detection. This method first splits one read into
multiple fragments randomly. Then the first and last
fragment aligned along the reference genome respect-
ively. According to whether the fragments align or not,
and the locations and directions if aligned, CNVs can be
detected. The mechanism of SR is similar to RP to some
extent. Sequence assembly (AS) method [62, 63] could
discover all kinds of genetic variations theoretically be-
cause of its fine-scale working. The direct assembly of
short reads without reference genome is called de novo
assembly and the general strategy is to reconstruct DNA
fragments, i.e., contigs, based on assembling overlapping
reads firstly. Then by comparing the assembled fragments

to the reference genome, the abnormal genomic regions
with discordant copy number (CN) can be identified.
Additionally, AS-based methods can also use a reference
genome to improve the computational efficiency and
contig quality.
RD methods applied in the 1000 Genomes Project data

have been shown to predict accurate copy number
values due to its capability of high-resolution CNV calls
[19]. There have been several approaches based on RD,
such as MAQ [52, 64], SegSeq [58], mrFAST [47] and
CNVnator [65]. CNVnator can overcome some disadvan-
tages, including unique regions of the genome [52, 58, 64],
poor breakpoint resolution [47, 52, 58, 64], and detect
different sizes of CNVs, from a few hundred bases to
megabases in the whole genome. For CNVs accessible
by RD described Abyzov et al. [65], CNVnator has high
sensitivity (86 ~ 96%), low false-discovery rate (3% ~ 20%),
high genotyping accuracy (93%~ 95%), and high reso-
lution in breakpoint discovery. In addition, they estimated
that at least 11% of all CNV loci involve complex,
multi-allelic events, a considerably higher estimate than
reported earlier [66].
For the CNV detection in the cattle genome, there have

been several studies reported using such methods, includ-
ing CGH [67, 68], BovineSNP50 Beadchip [32, 69, 70],
BovineHD SNP Beadchip [25, 31] and NGS [23, 27–30].
In this study, the objective was to identify candidate genes
for milk protein and fat traits of dairy cattle through CNV
detection based on NGS data of specific Holstein bulls
that have extremely high and low estimated breeding
values (EBVs) for milk protein and fat percentages.

Methods
Animals and re-sequencing
Eight proven Holstein bulls with high reliabilities (>0.90)
of estimated breeding values (EBVs) for milk protein
percentage (PP) and fat percentage (FP), born between
1993 and 1996, were selected from the Beijing Dairy
Cattle Center (http://www.bdcc.com.cn/) according to
their EBVs for PP and FP. EBVs were calculated based
on a multiple trait random regression test-day model
using the software RUNGE by the Dairy Data Center of
China (http://www.holstein.org.cn/). The bulls were
from two half sib families and two full sib families with
two bulls in each family. The two bulls in each group
showed extremely high and low EBV for milk PP and FP,
respectively. The detailed information of the 8 bulls is
present in Table 1.

Re-sequencing, data filter and sequence alignment
Genomic DNA of each bull was extracted from frozen
sperms by a standard phenol-chloroform method [71].
DNA degradation and contamination were monitored
on 1% agarose gels and the concentration and purity
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were assessed on NanoDrop 2000 (Thermo Scientific
Inc. Waltham, DE, USA); the high-quality DNAs were
then used for library construction. Two paired-end
libraries were constructed for each individual, the read
length was 2 × 100 bp, and whole genome sequencing
was performed using Illumina Hiseq2000 instruments
(Illumina Inc., San Diego, CA, USA). All processes were
performed according to the standard manufacturer’s
protocols. In order to get high-quality data, we removed
low-quality reads and those containing primer/adaptor
contamination which existing in the raw sequencing
data by utilizing NGS QC Toolkit with default parame-
ters [-l 75 -q 30] [72]. After data filtering, we used the
Burrows-Wheeler Aligner (BWA) program [73] with
default parameters [-A1 –B4] to perform sequence
alignment based on the UMD3.1 genome assembly
which was retrieved from the UCSC website (http://
genome.ucsc.edu/). To save run time during the down-
stream analysis, we converted the SAM files to BAM files
and then sorted and merged them by SAMtools [74].

Detection of CNV
CNVnator was run on merged BAM files with a bin size
of 200 bp following the authors’ recommendations [65].
After calling, quality control was performed on the raw
CNVs for each bull. The filtering criteria included P-value
<0.01 (pval1 calculated using t-test statistics), size >1 kb,
and q0 < 0.5. P-value <0.01 means that the region between
two calls is not a same CNV and q0 means fraction of
mapped reads with zero quality. In addition, the CNVs
that overlapped with gaps or unplaced chromosomes
(chrUn in UCSC) were removed.

Statistical analysis
According to the EBVs for PP and FP, the 8 Holstein
bulls were divided into 2 groups, high-group and low-
group, and the differential CNVs between the high and
low groups were obtained as the following steps. Here, a
differential CNVR describes a CNVR that was segregating
within the two populations. Firstly, as for any two CNVs

from any two individuals of 4 bulls within each group,
they were considered to be common CNVs if they have
>30% reciprocal overlap, then we obtained the common
CNV regions (CNVRs) by merging the common CNVs
across the four individuals in either the high or low
groups, respectively. Secondly, after getting the common
CNVRs in each group, differential CNVRs were identified
between the high and low groups of bulls with extremely
high/low PP and FP. To compare our results with previous
studies, we used the UCSC liftOver tool [75] to convert
the coordinates of CNVRs between UMD3.1 and Btau4.0.

Quantitative PCR validation
Quantitative PCR (qPCR) was used to validate CNVRs
detected by CNVnator. A total of 11 CNVRs was randomly
chosen. For each CNVR, we firstly determined the best
primers after designing multiple pairs of primers because
of the uncertainty of the CNVR boundaries using Primer3
webtool (http://bioinfo.ut.ee/primer3-0.4.0/primer3/). To
ensure the amplification efficiencies of all pairs of primers,
a serial diluted genomic DNA sample from a common
cattle was used as template for creating a standard curve of
each pair of primer. The Basic Transcription Factor 3
(BTF3) gene was chosen as the control with the assump-
tion that there were two copies of DNA segment in this
region [69]. With a total volume of 15 μL reagents in a 96-
well plate, qPCR was conducted using SYBR green chemis-
try in triplicate reactions on LightCycler® 480, Roche. The
condition for thermal cycle was as follows: 5 min at 95 °C
followed by 45 cycles at 95 °C for 10 s, 60 °C for 10 s and
72 °C for 15 s. The 2-ΔΔCt method was used to calculate
the relative copy number for each test region. First, we ob-
tained the average Ct value of three replications of each
sample and normalized against the control gene. Then we
calculated the ΔCt value between the test sample and refe-
rence sample detected with normal status (i.e. two copy
numbers) by CNVnator. Finally, a value around 3 or above
was considered as gain and a value around 1 or below was
considered as loss.

Gene contents and functional annotation
Using the BioMart Database, the genes within the detected
CNVRs were retrieved based on UMD3.1 sequence assem-
bly (http://asia.ensembl.org/biomart/martview/). Ensembl
genes overlapping with CNVRs completely or partially
were considered as copy number variable and selected for
further analysis. To provide insight into the functional en-
richment of genes picked out above, we carried out anno-
tation analysis, including GO (Gene Ontology) and KEGG
(Kyoto Encyclopedia of Genes and Genomes), using
KOBAS 2.0 [76], which annotates an input set of genes
with putative pathways and disease relationships based
on mapping to genes with known annotation. KOBAS
2.0 accepts ID and cross-species sequence similarity

Table 1 The estimated breeding values and family information
about 8 Holstein bulls

Family Sample Relationship EBV for PP EBV for FP Reliability

1 1 Full-sib 0.03 0.1 0.99

2 −0.13 −0.31 0.97

2 3 Full-sib −0.03 0.27 0.98

4 0.08 0.56 0.99

3 5 Half-sib 0.01 −0.26 0.99

6 0.22 0.09 0.91

4 7 Half-sib 0.07 −0.14 0.98

8 −0.06 −0.26 0.99
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mapping and then performs statistical tests to identify
statistically significantly enriched pathways and dis-
eases. KOBAS 2.0 incorporates knowledge across 1327
species from 5 pathway databases (KEGG PATHWAY,
PID, BioCyc, Reactome and Panther) and 5 human dis-
ease databases (OMIM, KEGG DISEASE, FunDO, GAD
and NHGRI GWAS Catalog). All annotated Ensembl
genes are used as background. In addition, we com-
pared CNVRs with the reported cattle QTLs for milk
PP and FP traits in the Animal QTL database [77].

Results
Sequencing data set statistics and CNV discovery
With Illumina paired-end sequencing technology, we
obtained NGS data from the 8 Holstein bulls (Table 2).
After we mapped them on the UMD3.1 bovine genome
assembly and excluded potential PCR duplicates, the
depth of coverage for each individual varied from 8.2×
(sample 6) to 11.9× (sample 5). As shown previously, a
4x coverage is sufficient for CNV detection using a RD
method [19, 23, 78]. With CNVnator, CNVs were de-
tected for 8 individuals. After quality control, the num-
ber of duplication ranged from 687 (sample 6) to 777
(sample 4), and the number of deletion varied from 1091
(sample 1) to 1620 (sample 3) (Table 2). In order to de-
termine how many CNVRs were detected from all 8
bulls, all the CNVs were merged if overlaps were 1 bp or
greater, and a total of 6015 CNVRs were obtained. The
detailed information about CNVs is shown in Additional
file 1: Table S1. From Fig. 1, we can see the CNV land-
scapes roughly. Although chromosome 1 was the lon-
gest, the number of CNVs it contained was not the most
in any individual. Chromosome X occupied the most
CNVs and simultaneously the largest CNVs.
To confirm the CNVs detected by CNVnator, qPCR

based on the relative comparative threshold cycle (CT)
method was performed to validate 11 randomly chosen
predicted CNVRs representing different types of duplica-
tion, deletion and both, on the same 8 samples for whole
genome sequencing (Additional file 2: Table S2). It was

shown that the validate rates of the 8 samples varied
from 57.14% to 90% with an average of 73.04%.

Identification of differential CNVRs between high and low
groups
According to the experimental design and filtering stan-
dards, we first screened common CNVRs shared by the
high and low groups. Then these common CNVRs were
excluded from whole CNVRs of high and low group re-
spectively, and 268 and 280 CNVRs as group-specific in
high and low group were remained. Finally, a total of
487 differential CNVRs were obtained after merging two
group-specific CNVRs if overlaps were 1 bp or greater,
covering chromosomes 1-X (Additional file 3: Table S3),
which amounted to 8.23 Mb of the cattle genome (Fig. 2).
The length of CNVRs varied from 1.6 kb to 275.6 kb
with an average of 16.91 kb and a median of 9.4 kb
(Table 3) and 31.3% of all CNVRs had sizes ranging from
5 kb to 10 kb (Fig. 3). The CNVRs were divided into 3
categories, i.e. 242 deletions, 229 duplications and 16
both events (Fig. 4). In terms of count and length, dele-
tion and duplication CNVRs were almost similar (242 vs
229, 3.89 Mb vs 3.58 Mb).

Gene contents of differential and group-specific CNVRs
Differential CNVRs
Utilizing BioMart in the Ensembl database (Ensembl
Genes 79), we obtained the IDs for the genes that are lo-
cated within or overlapped with the detected CNVRs. As
a result, a total of 235 genes were identified, including
218 protein-coding genes, 5 miRNA genes, 4 snRNA, 3
pseudogenes, 3 rRNA and 2 snoRNA (Additional file 4:
Table S4) and 29.98% of the CNVRs encompass 1 or
more genes. To know about the biological functions of
these genes, GO and KEGG pathway analysis were per-
formed with KOBAS. We found that there were 163
significant GO terms and 8 significant KEGG path-
ways. GO terms related to protein and lipid metabol-
ism were enriched (p < 0.05), such as long-chain fatty
acid binding, protein glycosylation, asymmetric protein
localization, glycoprotein biosynthetic process, protein
serine/threonine kinase activator activity and negative
regulation of protein acetylation. Also, the enriched
KEGG pathways included several well-known protein
and lipid metabolisms pathways (p < 0.05) such as in-
sulin/IGF pathway-protein kinase B signaling cascade,
prolactin signaling pathway and AMPK signaling path-
way (Additional file 5: Table S5).

Group-specific CNVRs
Furthermore, we obtained 106 and 139 genes based on
the 268 and 280 CNVRs across 4 individuals in the high
and low groups, respectively. In high group, there were 2
significant GO terms, including lipid metabolism and

Table 2 Summary statistics of sequencing data and CNV of 8
Holstein bulls

No of bulls Numbers of mapped reads Depth Duplication Deletion

1 257615849 9.8 743 1091

2 246773374 9.4 708 1295

3 237335344 9.0 705 1620

4 252933841 9.6 777 1210

5 312273373 11.9 756 1348

6 215134987 8.2 687 1397

7 249257655 9.5 706 1373

8 251909753 9.6 705 1410
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glucose metabolic processes, and 1 significant KEGG
pathways, a well-known lipid metabolisms pathways
(prolactin signaling pathway) (p < 0.05) (Additional file 6:
Table S6). In low group, 3 significant GO terms, i.e.,
dopamine biosynthetic process and insulin receptor
binding, and 1 significant KEGG pathway (olfactory
transduction) were enriched (p < 0.05) (Additional file 6:
Table S6).

Quantitative traits locus overlapped with differential and
group-specific CNVRs
Differential CNVRS
We compared the detected differential CNVRs between
high and low groups with the previously reported cattle
QTL regions for milk production traits (cattle QTL data-
base, http://www.animalgenome.org/cattle/) in order to
further study the potential genetic effects of these

Fig. 1 Individualized cattle CNV map. The tracks under every black bar represent the CNVs for sample 1 to sample 8 (in order from top to bottom).
The colors for each bar in the animal data se tracks represent the average estimated CN for each CNV as shown in the legend
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Fig. 2 Different CNVRs between high and low group. Based on UMD3.1, 487 CNVRs derived from difference between high and low group were
shown in blue (deletion), red (duplication), and green (both)

Table 3 Characterization of cattle CNVs detected in different studies based on re-sequencing data

Studies Summary statistics of CNVRs

Mean (Kb) Median (Kb) Min (Kb) Max (Kb) Std Total (Mb)

Bickhart et al. 43.95 23.63 10.02 510.94 54.45 55.59

Zhan et al. 6.98 3.8 3.17 129.97 10.29 3.63

Stothard et al. 4.16 3.17 1.84 28.03 2.96 3.29

This study 12.47 7.2 1.2 422.8 19.82 72.02
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CNVRs. Finally, 75 QTLs for protein yield, protein per-
centage, fat yield and fat percentage were found to be
overlapped with 95 CNVRs (Additional file 7: Table S7),
implying the functional genes within these CNVRs are
likely candidates for milk protein and fat traits.

Group-specific CNVRs
In addition, we compared 268 CNVRs in the high group
with cattle QTL regions for same traits as above. Totally,
46 QTLs were obtained which overlap with 40 CNVRs
(Additional file 8: Table S8). Similarly, we compared 280
CNVRs with corresponding traits in the low group
and 55 QTLs overlapped with 52 CNVRs were found
(Additional file 8: Table S8).

Discussion
In this study, we detected genome-wide CNVs of 8
Holstein bulls with extremely high and low EBVs for PP
and FP based on NGS using CNVnator. We obtained
1834 ~ 2326 CNVs with an average of 2066.5 per bull.
Compared with the previous methods based on SNP
chip and aCGH of detecting CNV, NGS has many
advantages in terms of both CNV numbers and sizes be-
cause the sequencing approach overcomes the sensitivity
limits in the previous methods, and can more precisely
identify CNV boundaries [79]. With the ongoing devel-
opments and cost decreases in NGS, the sequencing
approaches has become more and more popular for
CNV detection. Due to the fact that it was not designed
for CNV detection specifically and incomplete coverage

Fig. 3 The length and frequency distribution of differential CNVRs

Fig. 4 Types of differential CNVRs
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of the whole genome, SNP chip was restricted in the
application of CNV detection.
Based on the observation of CNV distribution, they

were enriched in centromeric and the subtelomeric
which is in agreement with the distribution of the cattle
SD regions as reported before [80]. The number of
CNVs (14,821) identified in this study was more than
the reports based on NGS data by Bichkhart et al. (1265)
in Angus, Holstein, Hereford and Nelore cattle [23],
Stothard et al. (790) in Holstein and Black Angus [28],
Zhan et al. (520) in Holstein [27], Boussaha et al. (957)
in Holstein, Montbéliarde and Normande [29] and Ben et
al. (823) in Holstein [30]. In addition, Jiang et al. detected
CNVs based on Illumina BovineSNP50 (99) and BovineHD
chips (367) data in Chinese Holstein population [24, 25],
which were less than what we detected in this study. After
converting 6015 CNVRs to corresponding results based
on Btau4.0 using the UCSC liftOver tool with 50% of bases
that must remap, 3996 CNVRs of which were successfully
converted amounting to about 45.06 Mb. We found that
~80% of the 3996 CNVRs overlapped with those reported
by previous investigations [23, 27–30] by 1 bp or greater
(Fig. 5), and the largest overlap was ~7.92 Mb of the re-
ported by Bickhart et al. [23]. As for the above inconsisten-
cies, there are likely due to different detection methods and
different samples. Bickhart et al. used mrFAST/mrsFAST
and WSSD [23], and both Zhan et al. [27] and Stothard
et al. [28] performed CNV-seq, and Boussaha et al. [29]
used GATK, Pindel, and Ben et al. [30] performed

control-FREE. While in this study, we used CNVnator. In
addition, different cattle breed with specific genetic back-
ground may induce the inconsistencies of number of
CNVs and CNVRs among various studies as well. In this
study, the qPCR validation rates of the detected CNVs was
57.14% to 90%, which was similar to those reported by
Bickhart et al. (82%) [23], Zhan et al. (86%) [27], Stothard
et al. (100%) [28] and Yi et al. (91.7%) [41], showing the
high accuracy of NGS-based CNV detection. The rela-
tively lower validation rate in this study may be due to the
following reasons: (1) false positive in CNV calling even if
CNVnator has a low false-discovery rate (3% ~ 20%) [65],
(2) primers in qPCR experiment were not the best al-
though we tried multiple primers. As we know, there may
be potential SNPs and small INDELs in the genome, and
the negative impact of these potential variants could result
in the reduced primer efficiency.
Genome wide CNV detection is also a strategy to

identify the potential key genes for the traits of interest
by mining the genes within the CNVRs in a specific ex-
perimental design. Hence, the different CNVRs between
the high and low groups of Holstein bulls with extremely
high and low EBVs for PP and FP were used for candi-
date gene identification for milk protein and milk fat.
We determined a total of 487 differential CNVRs be-
tween the high and low groups, and further found that
235 functional genes were located within these CNVRs.
Function analysis showed that the 235 genes were
enriched in 163 significant GO terms and 8 significant

Fig. 5 Comparison between 3996 CNVRs in this study and the other cattle CNVR datasets on Btau4.0
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KEGG pathways. Especially, the processes of long-chain
fatty acid binding, protein glycosylation, asymmetric
protein localization, glycoprotein biosynthetic process,
protein serine/threonine kinase activator activity and
negative regulation of protein acetylation were related to
protein or lipid metabolism were enriched. Also among
the KEGG pathways we detected, insulin/IGF pathway-
protein kinase B signaling cascade, prolactin signaling
pathway and AMPK signaling pathway are well-known
pathways for protein and lipid metabolism [81, 82] and
10 genes involved in the biological process such as cell
apoptosis, protein modification, conversion of amino acid
and metabolism of fatty acids were included. These were
INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16,
ART3, SNCA and WNT7A.
The bovine insulin (INS) gene is close to the IGF2 and

TH genes. Insulin binding to the insulin receptor (INSR)
exerts biological function that maintaining the blood
glucose concentration through multiple signaling path-
ways, such as AMPK, insulin, mTOR and PI3K-Akt sig-
naling pathways, which play critical roles in milk fat and
protein synthesis in dairy cattle [83]. The IGF2 gene was
related to breast epithelial and stromal cell proliferation
in human [84], and over-expression of IGF2 increased
breast cancer development [85], thus, it was implied that
IGF2 may play an important role in maintaining bovine
mammary gland epithelial cell function well. Forkhead
box O3 (FOXO3) was also known as FOXO3a, which
was considered as a key downstream effector of the
well-known signaling pathways for lipid and protein me-
tabolism, i.e. PI3K-Akt, MAPK and Jak-STAT [86, 87].
Tyrosine hydroxylase (TH) is the rate limiting enzyme
for converting tyrosine to dopamine which was a crucial
regulator of prolactin (PRL) [88]. PRL is essential for
mammary gland involution and lactation [88, 89]. The
Stearoyl-CoA desaturase 5 (SCD5) gene is located within
a known QTL region for milk protein [90] and fat yield
[91], but also near to the SNPs significantly associated
with milk fat yield, protein yield, fat percentage and pro-
tein percentage identified by a previous GWA study
[15]. The ADP-ribosyltransferase 3 (ART3) gene encodes
the arginine-specific ADP-ribosyltransferase that has
impact on cell proliferation and apoptosis etc. [92]. The
Wnt family member 7A (WNT7A) gene, as a member of
WNT gene family, encodes secreted signaling proteins
and is related to suppressing human lung cancer pro-
gression [93]. The synuclein alpha (SNCA) gene was
found to be associated with Parkinson’s and Alzheimer’s
diseases [94, 95]. Among the candidate genes, INS, IGF2,
FOXO3, TH, SCD5 were related with milk composition
traits according to previous studies, and identification of
them in current study confirmed their potential func-
tions. As for the remaining genes, there existed more or
less indirect association with milk composition traits.

Thereby, to gain further insights into the association of
the 10 candidate genes with milk composition traits, we
compared the chromosome positions of the 10 genes
with the significant SNPs detected by previous GWAS
for milk production traits in dairy cattle [4, 5, 7, 10, 15],
and found that all genes were located near to multiple sig-
nificant SNPs for milk protein and fat traits with 0.01 Mb
to 9.90 Mb (Additional file 9: Table S9), suggesting their
potential associations with milk compositions.
In the study of Xu et al. [13], 34 CNVs were found sig-

nificantly associated with milk production traits, of which
11 CNVs were included in the differential CNVRs identi-
fied in this study, i.e., CNVR45, CNVR46, CNVR47,
CNVR189, CNVR190, CNVR200, CNVR201, CNVR202,
CNVR203, CNVR399 and CVNR400. Within CNVR400,
two candidate genes, INS and IGF2 were enriched. Ben et
al. [30] identified two CNVRs associated with milk com-
position, including one (chr17: 75031000–75158596) with
milk fat yield and milk protein yield, and another (chr18:
12381000–12527000) with milk fat yield, and 8 genes were
enriched in these two regions, especially the MTHFSD
gene within the second CNVR belongs to the folate me-
tabolism gene family and plays critical roles in regulating
milk protein synthesis [96]. Although there was no overlap
between these CNVRs and ours, two CNVRs in this study
were located near to them with 2.51 Mb and 5.83 Mb, re-
spectively. The DEPDC5 gene overlapped with CNVR290
encodes a protein which was a component of the GAP ac-
tivity toward Rags complex and is involved in mTORC1
pathway [97].
In addition, we found that 95 differential CNVRs

detected in this study were overlapped with 75 known
QTLs that have been shown to be associated with
protein yield, protein percentage, fat yield and fat per-
centage in dairy cattle (Cattle QTLdb, http://www.animal
genome.org/cgi-bin/QTLdb/BT/index). Eight annotated
genes were overlapped with these differential CNVRs
(Additional file 7: Table S7).

Conclusions
In conclusion, based on NGS data of 8 Holstein bulls
with extremely high and low EBVs for milk PP and FP,
we identified a total of 14821 CNVs corresponding to
6015 CNVRs. Of these, 487 differential CNVRs between
the high and low groups were obtained. Of note, we fur-
ther identified 235 annotated genes that were located in
or overlapped with these differential CNVRs, including
10 genes significantly enriched for specific biological
functions related to protein and lipid metabolism, insulin/
IGF pathway-protein kinase B signaling cascade, prolactin
signaling pathway and AMPK signaling pathways. These
genes included INS, IGF2, FOXO3, TH, SCD5, GALNT18,
GALNT16, ART3, SNCA and WNT7A, implying their
potential association with milk protein and fat traits.
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