267 research outputs found

    A New Biometric Template Protection using Random Orthonormal Projection and Fuzzy Commitment

    Full text link
    Biometric template protection is one of most essential parts in putting a biometric-based authentication system into practice. There have been many researches proposing different solutions to secure biometric templates of users. They can be categorized into two approaches: feature transformation and biometric cryptosystem. However, no one single template protection approach can satisfy all the requirements of a secure biometric-based authentication system. In this work, we will propose a novel hybrid biometric template protection which takes benefits of both approaches while preventing their limitations. The experiments demonstrate that the performance of the system can be maintained with the support of a new random orthonormal project technique, which reduces the computational complexity while preserving the accuracy. Meanwhile, the security of biometric templates is guaranteed by employing fuzzy commitment protocol.Comment: 11 pages, 6 figures, accepted for IMCOM 201

    Hydrothermal treatments of corn cob and hemicelluloses extraction

    Get PDF
    Corn cob samples were treated with water (autohydrolysis reaction) using a liquid to solid ratio of 10:1 w/w. The optimal condition for extraction of hemicelluloses was found at 185ÂșC for 30 min. This resulted in the release of 9.7% of hemicelluloses (% dry starting material), corresponding to the dissolution of 27.9% of the original hemicellulose. Chemical composition and physico-chemical properties of the samples were elucidated by a combination of sugar analyses and thermal analysis. The results showed that the treatment was effective on the extraction of hemicelluloses from corn cob and that the TGA analysis of xylan from birch wood was found to be initially degraded at about 220 ÂșC whereas hemicelluloses from corn cob would be degraded at about 225 ÂșC.Fundação para a CiĂȘncia e a Tecnologia (FCT).Erasmus Programme (Turkey)

    Hemicelluloses fractions extraction of corn residue

    Get PDF
    Fundação para a CiĂȘncia e a Tecnologia (FCT)Erasmus Programm

    Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma

    Full text link
    Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma, the structure and molecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the airway epithelial barrier are reviewed

    Effect of Red Cabbage Extract on Minced Nile Perch Fish Patties Vacuum Packaged in High and Low Oxygen Barrier Films

    Get PDF
    Oxidation of polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish causes loss of product quality. Oxidative rancidity causes loss of nutritional value and undesirable color changes. Therefore, powerful antioxidant extracts may provide a relatively low cost and natural means to reduce oxidation, resulting in longer, higher quality and higher value shelf life of foods. In this study, we measured synergistic effects of red cabbage antioxidant and vacuum packaging on lipid oxidation in fresh tilapia patties using thiobarbituric acid reactive substances (TBARS) assay, peroxide value (PV), pH and color analysis. Concentrated red cabbage extract was obtained using an efficient freeze/thawed method developed in our laboratory (citation). Fresh tilapia patties were prepared with solutions containing 68 ppm of extract concentrate for each 50 gr of fish patties. Samples were stored for 15 days at refrigeration conditions (4±1°C) and analyzed interval between two days for pH, color analysis, and lipid oxidation assessments. Results show that treated and vacuum packaged samples had lower oxidation levels than controls. Lipid peroxide values on treated samples showed benefits through day 12. This work shows that synergistic effect of red cabbage antioxidant extracts and vacuum packaging may represent an inexpensive and natural method for retarding oxidative spoilage of fresh fish

    Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production

    Full text link
    In this work we report the synthesis of organic inorganic solid with spherical morphology where enzyme, as active compounds, is encapsulated. The organic phase of nanospheres is composed of l-phosphatidylcholine, as liposome, and lipase from Rhizomucor miehei, as enzyme. The organic phase is covered with porous inorganic silica shell that could stabilize the internal liposomal phase and, consequently, isolate and protect the bioactive molecules. The liposome and silica amount used during the immobilization procedure have been optimized in order to obtain active and stable heterogeneous biocatalyst. Hybrid-nanospheres containing the enzyme were used to catalyze the transesterification reaction of triolein with methanol to methyl esters, typical biodiesel mixture compounds. The encapsulated enzyme retains its activity after 5 reaction cycles. The total productivity of the best catalyst obtained is higher than that of the free enzyme.The authors, A.C. and U.D., thank the Spanish MICINN (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2011-29020-C02-01) for their financial support.Macario, A.; Verri, F.; DĂ­az Morales, UM.; Corma CanĂłs, A.; Giordano, G. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production. Catalysis Today. 204:148-155. doi:10.1016/j.cattod.2012.07.014S14815520

    Recent advances in the epithelial barrier theory

    Get PDF
    The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernisation, and industrialisation, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight junction barriers, inflammation, cell death, oxidative stress and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms

    Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80

    Get PDF
    Background The rising prevalence of many chronic diseases related to gut barrier dysfunction coincides with the increased global usage of dietary emulsifiers in recent decades. We therefore investigated the effect of the frequently used food emulsifiers on cytotoxicity, barrier function, transcriptome alterations, and protein expression in gastrointestinal epithelial cells. Methods Human intestinal organoids originating from induced pluripotent stem cells, colon organoid organ‐on‐a‐chip, and liquid–liquid interface cells were cultured in the presence of two common emulsifiers: polysorbate 20 (P20) and polysorbate 80 (P80). The cytotoxicity, transepithelial electrical resistance (TEER), and paracellular‐flux were measured. Immunofluorescence staining of epithelial tight‐junctions (TJ), RNA‐seq transcriptome, and targeted proteomics were performed. Results Cells showed lysis in response to P20 and P80 exposure starting at a 0.1% (v/v) concentration across all models. Epithelial barrier disruption correlated with decreased TEER, increased paracellular‐flux and irregular TJ immunostaining. RNA‐seq and targeted proteomics analyses demonstrated upregulation of cell development, signaling, proliferation, apoptosis, inflammatory response, and response to stress at 0.05%, a concentration lower than direct cell toxicity. A proinflammatory response was characterized by the secretion of several cytokines and chemokines, interaction with their receptors, and PI3K‐Akt and MAPK signaling pathways. CXCL5, CXCL10, and VEGFA were upregulated in response to P20 and CXCL1, CXCL8 (IL‐8), CXCL10, LIF in response to P80. Conclusions The present study provides direct evidence on the detrimental effects of food emulsifiers P20 and P80 on intestinal epithelial integrity. The underlying mechanism of epithelial barrier disruption was cell death at concentrations between 1% and 0.1%. Even at concentrations lower than 0.1%, these polysorbates induced a proinflammatory response suggesting a detrimental effect on gastrointestinal health
    • 

    corecore