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Abstract 

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably 

autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. 

Global pollution and environmental toxic agent exposure have worsened over six decades 

because of uncontrolled growth, modernization, and industrialization, affecting human health. 

Introducing new chemicals without any reasonable control of their health effects through these 

years has led to documented adverse effects, especially on the skin and mucosal epithelial 

barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, 

micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to 

compromise the epithelial barrier integrity. This disruption is linked to the opening of the 

tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. 

Consideration must be given to the interplay of toxic substances, underlying inflammatory 

diseases, and medications, especially in affected tissues. This review article discusses the 

detrimental effect of environmental barrier-damaging compounds on human health and involves 

cellular and molecular mechanisms.

Keywords: detergents, exposome, particulate matter, pollution

Introduction

The epithelial barrier theory postulates that the recent in-
crease in chronic non-communicable diseases, including 
autoimmune and allergic disorders, results from the disrup-
tion of the epithelial barriers because of exposure to haz-
ardous environmental agents (1). Since the 1960s, more than 
350 000 chemical molecules have been introduced to our lives 
without concern for their effects on human and animal health. 
Many of them have ended up as pollutants and even more 
than 110 000 of them have not been appropriately reported. 
The harmful impacts of these substances on the body con-
tinuously increase due to changes in the human exposome, 
which is the sum of all the environmental exposures such 
as diet, microbiome, and pollutants during the lifetime of 
an individual, driven by industrialization and modernization 
(2–4). Every day, new potentially hazardous chemicals enter 
our lives, and this increasing exposure to toxic compounds 
adversely affects epithelial tissues, the microbiome, the im-
mune system, and human health (2, 5–10). Several studies 

demonstrate how these environmental factors harm the integ-
rity of the epithelial barriers, leading to chronic diseases (1–4, 
6, 7, 9–17). Epithelial barrier damage by environmental toxic 
compounds results in dysbiosis, translocation of microbiota 
to subepithelial tissues, opportunistic pathogen colonization, 
chronic inflammation, local and systemic immune responses, 
and defective epithelial barrier healing. As a result, disruption 
of the homeostasis of the epithelial barrier occurs, which is 
currently associated with various metabolic and autoimmune 
diseases (1). However, the full impact of these environmental 
factors on human health remains unknown. A crucial factor 
to consider is the synergistic impact of environmental toxic 
compounds, existing inflammatory comorbid diseases, and 
medications, particularly in inflamed or afflicted tissues. 
Within this context, we will discuss the homeostasis of epi-
thelial barrier integrity on mucosa and skin, changes in the 
human exposome in recent decades, and the detrimental ef-
fect of environmental toxic agents and diseases associated 
with epithelial barrier impairment.

© The Author(s) 2024. Published by Oxford University Press on behalf of  
The Japanese Society for Immunology.
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212  The epithelial barrier hypothesis

Homeostasis of the epithelial barrier integrity

Epithelial tissue covers the inner and outer surfaces of the 
human body, forming a barrier that protects the structural 
and functional integrity of the organism. Being the interface 
between the body and the environment, it is the first line to 
encounter any potentially dangerous component from the 
environment. Thus, epithelial surfaces continuously contact 
with various hazardous factors, including infectious organ-
isms, pollutants, and other environmental antigens. However, 
the immune regulatory mechanisms of the epithelium have 
evolved to protect the body against potentially harmful fac-
tors while avoiding unnecessary or excessive responses that 
cause tissue damage and harm the resident microbiota (18). 
In this context, the primary function of the epithelium is to 
protect the tissue’s functional and structural integrity, contrib-
uting to the healthy state of the organism as a whole.

Both the gastrointestinal and respiratory tracts have similar 
structures and function as selective barriers, allowing the 
passage of gases or nutrients while maintaining a beneficial 
relationship with the microbiota and preventing the entry of 
pathogens. The integrity of the mucosal barrier relies on the 
intercellular junctions that connect epithelial cells. Tight junc-
tions (TJs), adherens junctions, and desmosomes work to-
gether to seal off the space between cells, preventing the 
movement of soluble substances, proteins, and pathogens 
between the apical and basolateral surfaces.

The skin’s barrier function primarily depends on the outer-
most layer, known as the stratum corneum, formed through 
keratinocyte differentiation. Within the stratum corneum, 
keratinocytes produce essential components like filaggrin 
(FLG), loricrin, and keratin filaments, which are crucial for 
maintaining the skin’s normal barrier function. The stratified 
and cornified squamous epithelium of the skin acts as a pro-
tective shield, preventing water loss, and blocking the pene-
tration of foreign substances, such as pathogens, allergens, 
and chemical irritants, from the external environment.

Furthermore, besides their physical barrier properties 
and the mucociliary clearance mechanism that removes for-
eign substances, epithelial cells also contribute to chemical 
defence. They secrete antimicrobial peptides, proteases, 
and antioxidants, serving as a chemical barrier (19–21). 
Additionally, epithelial cells express molecular sensors that 
detect microbial patterns, potentially triggering immune re-
sponses throughout the body. Pattern recognition receptors, 
both on the cell membrane and within the cell, recognize spe-
cific ligands present in pathogens, activating signalling path-
ways that promote the release of proinflammatory cytokines/
chemokines. This attracts and activates cells from the innate 
and adaptive immune systems (22). Disruption of any of these 
barrier functions in different organs can lead to damage, in-
flammation, and disease.

Changes in the exposome and exposure to 

environmental toxic agents

Air pollution-related compounds

Air pollution poses a significant threat to our era, contributing 
to climate change and being a major cause of respiratory dis-
eases (23, 24). According to the World Health Organization’s 

Global Ambient Air Quality Database, 99% of the global 
population is exposed to poor air quality (25, 26). Ambient air 
pollution alone is responsible for an estimated 3.7–4.2 million 
annual deaths worldwide (27). It is a complex mixture of gas-
eous and particulate components, including nitrogen oxide 
(NO), nitrogen dioxide (NO

2
), sulphur dioxide (SO

2
), carbon 

monoxide (CO), and ozone, as well as particulate matter (PM) 
from both natural and anthropogenic sources (27).

Besides outdoor pollution, indoor pollution is a major issue, 
with pollutant levels often higher indoors than outdoors. It is 
crucial to consider that people spend a significant amount of 
time indoors (28). Household air pollution is a major concern, 
leading to 2.9–4.3 million deaths each year, particularly in 
low- and middle-income countries (2). This issue is primarily 
caused by tobacco use and second-hand smoke. Although 
tobacco use has declined, it is still responsible for more than 
8 million deaths annually, mostly in low- and middle-income 
countries (29, 30).

Natural sources, such as dust, sea salt, desert dust, 
and forest fires, contribute to air and aquatic PM, while an-
thropogenic sources like traffic, power plants, and indus-
trial emissions add to the pollution burden (31, 32). Black 
carbon, aryl hydrocarbons, volatile organic hydrocarbons, 
polycyclic aromatic hydrocarbons, heavy metals, organic 
chemicals, minerals, and biological elements make up the 
majority of PMs (33–37). Over the past four decades, the 
atmospheric PM

2.5
 concentration increased 38%, especially 

in China and India (38). In particular, the black carbon con-
centration, mainly arising from the incomplete combustion 
of fossil fuels, has significantly increased (39). Exposure to 
PM

10
 and PM

2.5
 has been associated with higher all-cause, 

cardiovascular, and respiratory mortality (40). Studies show 
that air pollution exacerbates cardiovascular and respira-
tory diseases and is linked to the development of asthma, 
diabetes, and various neurocognitive disorders (41–43). 
With the increased use of on-road vehicles, diesel exhaust 
particulates (DEPs) have become a crucial part of air pol-
lution. It is a complex blend of various substances, present 
either in gaseous or particulate form. The gaseous compo-
nents of DEPs comprise CO, nitrogen compounds, sulphur 
compounds, and a wide array of low-molecular-weight hy-
drocarbons, including aldehydes, benzene, polycyclic aro-
matic hydrocarbons and their nitro forms (44).

Volatile organic compounds (VOCs) are carbon-based 
molecules with a low boiling point and readily vaporize at 
room temperature. These volatile substances, such as ben-
zene, toluene, and formaldehyde, are cytotoxic and/or car-
cinogenic solvents found in cleaning products, wallpaper, 
paints, and plastics (45, 46). These compounds can pose 
health risks when released into the air. Additionally, certain 
VOCs can react with NO

2
 under ultraviolet light from the sun, 

leading to the formation of ozone (47).

Micro- and nano-plastics

Micro- and nano-plastic (MPs and NPs) pollution has be-
come a significant environmental concern because of the 
widespread use of plastics, driven by their low production 
cost and high durability. However, plastic waste poses a ser-
ious threat to nature as most plastics are non-biodegradable. 
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The epithelial barrier hypothesis  213

Globally, approximately 275–350 million metric tons (Mt) of 
plastic waste were produced due to mismanagement, and 
4.8–12.7 Mt of plastic waste find their way into the oceans 
annually (48–50). It is estimated that 8300 Mt have been 
produced so far, 60% of them have accumulated in the en-
vironment (48). This plastic waste breaks down into small 
fragments and particles known as MPs (<5 mm) and NPs 
(1–1000 nm) when entering the environment. The degrad-
ation products of plastic pollution can be found in the air, 
water, and sediment, affecting various ecosystems (51, 52). 
Studies have shown that both NPs and MPs can be harmful 
to aquatic species like zooplankton, bivalves, and small fish 
(52). Furthermore, NPs can penetrate living organisms and 
may even enter the human food chain, posing potential risks 
to human health (52, 53). Plastic particles have been de-
tected in the blood, lung, heart, synovial fluid, amniotic fluid, 
and placenta of humans (54–57).

Detergents, surfactants, and cleaning agents

The term detergent is commonly used for cleaning products. 
Detergents play a significant role in both industrial and do-
mestic settings. The global detergent industry is substantial, 
with an annual investment of $60 billion dedicated to deter-
gent production (58). Compounds acting as detergents are 
amphiphilic substances consisting of hydrophilic (polar) and 
hydrophobic segments. In an aqueous phase, detergents 
form micelles, aggregating with hydrophobic parts at the 
core and polar groups on the surface, shielding them from 
the surrounding water (59). These molecules are also surfact-
ants because of their ability to decrease the surface tension 
of water.

Laundry detergents commonly contain surfactants and 
various enzymes like cellulase, lipase, and amylase (60). 
Particularly, sodium lauryl (dodecyl) sulphate (SLS or SDS) 
shows rapid and strong toxicity to epithelial barriers in highly 
diluted doses (12, 61). Even highly diluted household laundry 
detergents and SDS can damage the skin epithelial barrier in 
mouse skin and ex vivo human skin. This barrier disruption 
was induced together with inflammatory responses in epithe-
lial cells (62). Professional dishwasher detergents and rinse 
compounds have become increasingly popular since the 
2000s, primarily due to their ability to streamline operations 
by reducing the need for manual labour while ensuring effi-
cient cleaning and sanitation of dishware. These machines 
are now widely utilized in various public food consumption 
areas, such as restaurants, schools, military barracks, and 
hotels, where they are employed on a regular basis (17). 
The cell toxic and inflammatory effects of professional and 
household dishwashers and rinse agents on cytotoxicity, 
barrier function, transcriptome, and protein expression in 
gastrointestinal epithelial cells have been recently reported. 
A disrupted epithelial barrier, particularly by rinse aid, was 
observed in liquid–liquid interface cultures, organoids, and 
gut-on-a-chip, demonstrating decreased transepithelial elec-
trical resistance, increased paracellular flux, and irregular 
and heterogeneous TJ immunostaining. Notably, alcohol 
ethoxylates elicited a strong toxic and barrier-damaging ef-
fect. RNA sequencing transcriptome and proteomics data 
demonstrated increased cell death and recovery signals in 

metabolism, proliferation, and immune and inflammatory re-
sponses of epithelial cells. It was exciting to demonstrate that 
detergent residue on washed and ready-to-use dishware ex-
hibited cytotoxic and epithelial barrier-damaging effects (17). 
In addition, substances such as bleach, detergents con-
taining ammonia, and disinfectants containing chloramine-T, 
quaternary ammonium compounds, and ethanolamine can 
cause irritation to the lungs and worsen asthma, respiratory 
symptoms, or rhinitis (63–65). Healthcare workers who are 
exposed to detergents, cleaners, and disinfectants such as 
formaldehyde, glutaraldehyde, enzymatic cleaners, hypo-
chlorite bleach, and hydrogen peroxide are at a greater risk 
of developing poorly controlled asthma (66).

Food additives in processed foods

Another significant environmental concern impacting health 
is the shift in dietary habits, characterized by increased con-
sumption of dietary fatty acids and processed foods, as well 
as the use of emulsifiers and a decrease in antioxidant con-
tent in western-style diets, which are widely consumed (4). 
These changes in dietary patterns and the introduction of 
additives in processed foods may have profound effects on 
human health. In processed foods, the use of food additives 
such as synthetic colourants, preservatives, stabilizers, sur-
factants, emulsifiers, and texturisers is common (67, 68). 
However, mounting evidence suggests that processed 
foods containing these additives and advanced glycation 
end-products formed during heat processing can disrupt 
the integrity of the epithelial barrier (4, 69, 70), damage 
the microbiome and activate the immune system. The two 
frequently used food emulsifiers, polysorbates 20 and 80, 
were recently reported for their cellular toxicity, damage to 
epithelial barriers, transcriptome alterations, and protein ex-
pression in gastrointestinal epithelial cells. Although 1% is 
allowed, epithelial barrier disruption, upregulation of apop-
tosis, inflammatory responses, and stress responses were 
observed at 20 times lower (0.05%) concentrations (71). 
Moreover, the consumption of processed foods has been 
linked to various health issues, including all-cause mor-
tality, obesity, metabolic syndrome, and depression (72). 
Additionally, food contamination can occur through contact 
with dishware that carries residues from cleaning products 
like detergents and anionic surfactants (3, 73, 74).

In vivo animal and human studies showed that the higher 
intake of ultra-processed food was associated with a risk of 
microvascular diseases such as chronic kidney disease (69) 
and inflammatory bowel disease (75), and commonly con-
sumed food additives would impact anxiety-related and so-
cial behaviours (76). Studies also demonstrated that not only 
food emulsifier consumption but also detergent exposure 
was related to obesity (77) and increased the prevalence of 
cardiovascular disease (78).

Mechanisms and pathological events involved in 

epithelial barrier damage

The deleterious effects of exposure to compounds inducing 
damage to the epithelial barriers have been substantiated 
through methodologies that assess both functional and 
molecular changes parallel to decreased epithelial barrier 
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214  The epithelial barrier hypothesis

integrity. These compounds exert direct cell death, metabolic 
and proinflammatory effects, and oxidative stress with dis-
ruptive influence on the expression and architecture of epi-
thelial junction molecules. This perturbation is manifested 
either through modulation of the expression levels of these 
junctional molecules or direct impairment of the epithelial 
cells.

For epithelial barrier integrity, mainly the paracellular per-
meability, the TJ molecules plays a significant role (79). As 
the primary determinant of paracellular permeability, their 
disruption causes the uncontrolled flow of apically located 
environmental factors such as microbiota, pathogens, pollu-
tants, and allergens to the subepithelial tissues (1). The TJs 
are essential in the maintenance of epithelial cell polarity, 
regulation of intracellular signalling pathways, cell prolifer-
ation, and differentiation. Thus, TJ damage causes disrupted 
epithelial cell homeostasis (79). TJs are composed of trans-
membrane proteins (occludin, claudins, and junctional ad-
hesion molecules) and adaptor proteins (Zonula occludens 
and cingulin). Claudins, which reside in the transmembrane 
area, are the major controllers of selective permeability (79). 
Many epithelial barrier-damaging compounds have been 
shown to alter the expression of these proteins both in RNA 
and protein levels. In addition, adherence junction proteins 
such as E-cadherin and catenin can be affected.

Epithelial barrier-damaging compounds can disrupt epi-
thelial barrier homeostasis in a variety of ways. These en-
vironmental agents often trigger epithelitis, characterized 
by the release of proinflammatory cytokines and damage 
to the epithelial barrier (Fig. 1). Active substances of deter-
gents, like SDS/SLS and similar surfactants, induce signifi-
cant inflammation, with increased reactive oxygen species 
(ROS) and interleukin (IL)-33 expression. These agents can 
lead to eosinophilic inflammation in various tissues, and 
exposure to them increases the expression of IL-33 and 
other proinflammatory factors (10, 15, 80, 81). In a recent 
study, two commercial laundry detergents and two com-
monly used surfactants for cleaning and cosmetics (SLS 
and sodium dodecyl benzene sulfonate) were intranasally 
administered to mice (81). After just four administrations, 
eosinophilic airway inflammation was induced and was ac-
companied by increased IL-33 expression and activation of 
group 2 innate lymphoid cells (ILC2s) in mice. Detergent-
induced eosinophilic airway inflammation was significantly 
attenuated in Rag2−/− Il2rg−/− and Il33−/− mice. Experiments in 
IL-5 reporter mice demonstrated the role of ILC2s in eosino-
philia. Detergent-induced IL-33 expression in airways was 
attenuated by n-acetyl cysteine, an antioxidant agent, treat-
ment, both in vivo and in vitro (81). In another recent study, 
detergents and SDS/SLS were studied for their role in eo-
sinophilic esophagitis (EoE) because common toothpastes 
contain relatively high doses of SDS/SLS. Very low doses of 
SDS (5 μg/ml) decreased epithelial barriers and increased 
the mRNA expression of IL-33 in cell lines and oesopha-
geal organoids. Mice exposed to SDS showed increased 
oesophageal inflammation with increased IL-33, basal zone 
hyperplasia, CD4+ cell infiltration, and oesophageal eosino-
philia, demonstrating that detergents can be an important 
trigger of asthma and EoE in the two above-mentioned 
studies (15).

Air pollutants, including PMs, ozone, NO, NO
2
, and DEPs, 

activate ROS and induce cell death, leading to the secre-
tion of alarmins like IL-33 and driving type 2 inflammation. 
PM

2.5
, a component of air pollution, triggers various forms 

of cell death and proinflammatory transcription factors, 
such as mitogen-activated protein kinases (MAPKs) and 
nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB), in human bronchial cells, resulting in exces-
sive inflammation, and immune responses (14, 82–84). In 
addition, DEP and ozone exposure increases alarmin levels 
in respiratory epithelial cells (13, 85, 86). Additionally, VOC 
exposure induces transcription factors like NF-κB, acti-
vator protein 1, and hypoxia-inducible factor 1-alpha and 
triggers proinflammatory cytokine release (87). Exposure 
to oral polystyrene MPs has been linked to the phosphor-
ylation of MAPKs, the induction of proinflammatory proteins 
like phospholipase A2 and cytochrome c oxidase I, and the 
release of proinflammatory cytokines, including IL-1β, IL-6, 
and tumour necrosis factor alpha (TNF-α), in kidney cells 
in animal models (88, 89). Exposure to polystyrene NPs in-
duces ROS and NLRP3 activation (90). It also causes se-
cretion of IL-8, NF-κB, and TNF-α on lung epithelial cells in 

vitro (91). These findings underscore the concerning impact 
of both NPs and MPs on inflammatory processes and their 
potential implications for various organ systems.

Evidently, the epithelial barrier-disrupting substance elicits 
increased epithelial barrier permeability via the inflamma-
tion it causes, apart from its direct effect on the epithelium. 
Notably, both type 1 and type 2 immune responses contribute 
to the leakiness of the epithelial barrier (1, 92, 93). The type 1 
response causes increased permeability within the epithelial 
barrier by the cytokines such as TNF-α. The TNF-α not only 
triggers cell death but also initiates a leakage pathway at TJs. 
Conversely, the type 2 immune response enhances barrier 
permeability, particularly through the pore pathway. This ef-
fect is mediated by cytokines such as IL-4 and IL-13, which 
are generated upon the activation of ILC2s triggered by 
alarm signals [IL-25, IL-33, and thymic stromal lymphopoietin 
(TSLP)] (92–94).

In addition, damage to microbiota and comprom-
ised healthy interaction between the epithelial cells and 
the microbiome is taking place. In many epithelial barrier 
dysfunction-related diseases, microbial dysbiosis is com-
monly observed (95–104). As a result, substances causing 
damage to the epithelial barrier increase its permeability by 
direct action on epithelial cells, changes in microbiota and 
microbial dysbiosis followed by immune system activation 
inducing cell death, cellular stress, alterations in the expres-
sion of cell adhesion molecules and promoting inflammation 
(Figs. 1 and 2).

Barrier damage leads to microinflammation in epithelial 
cells called epithelitis by secreting alarmins, TSLP, IL-25, 
and IL-33, which increase the subepithelial inflammation 
(Fig. 1). Subsequent to the barrier damage, the microbiota 
can translocate to the subepithelial tissues (105). It is al-
ready known that microbial translocation may cause several 
autoimmune and chronic diseases such as Crohn’s disease 
(106), chronic HIV Infection (107–109), SARS-CoV-2-related 
multisystem inflammatory syndrome (110), lupus (111), and 
fatty liver disease (112–114). Because of dysbiosis (115), 
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some opportunistic pathogens can colonize in the affected 
tissue, such as Staphylococcus aureus in atopic dermatitis 
(AD) patients (116). Aberrant host microbiota and epithe-
lial barrier interactions lead to abnormal mucosal immune 
responses, including upregulation of T helper 17 (Th17), 
Th1 and Th2 type responses, downregulation of T regula-
tory cells, and dysregulated humoral immunity (117, 118) 
(Fig. 1). Continuous exposure to exposomes may induce 
impaired metabolic flexibility of epithelial cells that affects 
the regenerative capacity of the intestinal tissue (119). As 
a result of an unhealed epithelial barrier, epithelitis con-
tinues and triggers a localized or occasionally systemic in-
flammatory response. A vicious cycle of connected events 
takes the lead to persistent peri-epithelial inflammation and 
barrier leakiness (Fig. 2).

Diseases associated with epithelial barrier impairment

Diseases linked to epithelial barrier impairment consist of 
three groups. (i) Diseases with local barrier defects such as 
asthma (120), AD (101), chronic rhinosinusitis (CRS) (121, 
122), allergic rhinitis (AR) (123), EoE (124–126), inflammatory 
bowel (127), and coeliac diseases (128). (ii) Systemic dis-
eases with gut or lung barrier defect and dysbiosis [obesity 
(129, 130), diabetes mellitus (131, 132), rheumatoid arthritis 
(133), multiple sclerosis (134), fatty liver (135), autoimmune 

hepatitis (136), systemic lupus erythematosus, and anky-
losing spondylitis (137)]. (iii) Neuropsychiatric diseases with 
a gut or lung barrier defect and dysbiosis [autism spectrum 
disorders (138), Parkinson’s disease (139, 140), Alzheimer’s 
disease (140, 141), stress-related psychiatric disorders (142), 
and chronic depression (143)] (1). This list is long, and many 
other diseases are involved when using the selection criteria 
for increased prevalence during the last few decades, mi-
crobial dysbiosis, epithelial barrier defects in biopsies, and 
circulating inflammatory biomarkers.

Diseases with a local barrier defect

Systemic type 2 immune responses such as activated, pro-
liferating Th2 cells, and activated ILC2s mainly characterize 
these diseases. Interestingly, targeting of type 2 cytokines, 
such as IL-4, IL-5, and IL-13, has been successfully used for 
the treatment of such as asthma, CRS and AD, and healing 
of epithelial barriers with these treatments has been reported 
(144–148). Barrier impairment in the upper airway induces 
nasal hyperreactivity (145, 149–152). A nasal epithelial bar-
rier dysfunction also triggers the passage of allergens, al-
lergic sensitization, and degranulation of mast cells, even 
without an inflammatory environment (153). Non-steroid 
anti-inflammatory drug (NSAID)-exacerbated respiratory 
disease, as a more severe phenotype of CRS with nasal 

Figure 1. Epithelial barrier impairment by environmental substances. These hazardous factors, including air pollutants (particulate matter, cig-
arette smoke, volatile organic compounds, etc.), detergents, surfactants, hand disinfectants, allergens (peanut, egg, milk, house dust mite, 
pollen, etc.), micro- and nano-plastics and food additives such as food colourants, emulsifiers, and sweeteners, cause epithelial barrier im-
pairment and inflammation. Cell death leads to alarmin (IL-25, IL-33, and TSLP) secretion, leading to the development of type 2 inflammation, 
which is characterized by the presence of ILC2s, Th2 cells, eosinophils (EOS), basophils (BAS), and mast cells (MC). In addition, epithelial 
cells secrete proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. Translocation of microbiota to subepithelial areas triggers an immune 
response to commensals and opportunistic pathogens.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/in
tim

m
/a

rtic
le

/3
6
/5

/2
1
1
/7

5
6
0
3
3
4
 b

y
 F

o
rs

c
h
u
n
g
s
s
te

lle
 fu

e
r s

c
h
w

e
iz

e
ris

c
h
e
 S

o
z
ia

l- u
n
d
 W

irts
c
h
a
fts

g
e
s
c
h
ic

h
te

 d
e
r U

n
iv

e
rs

ita
e
t Z

u
e
ric

h
 u

s
e
r o

n
 1

0
 A

p
ril 2

0
2
4



216  The epithelial barrier hypothesis

polyps, was associated with a distinct dysregulation of epi-
thelial barrier function in nasal polyp tissue (154). The mech-
anisms of barrier dysfunction in these diseases are not fully 
understood. Zhang et al. (155). showed that mucin-1 de-
ficiency promotes nasal epithelial barrier dysfunction with 
claudin 1 (CLDN-1) degradation via RBFOX3 (RNA-binding 
protein, fox-1 homolog 3) shortage, augmenting ubiquitin 
proteasomal degradation in AR. In addition, Callejas-Díaz 
et al. (156) demonstrated that the genetic transcriptional pro-
gram responsible for ciliogenesis and cilia function is signifi-
cantly impaired in epithelium from CRs with nasal polyps and 
there is altered expression of miR-34 and miR-449 families. 
Moreover, Gawrysiak et al. (157) reported that human rhino-
virus HRV16 damages barrier functions and impairs the re-
generation of human lung vascular endothelium, leading to 
uncontrolled exudates of protein-rich extravascular fluid and 
tissue oedema. In the pathogenesis of EoE, local barrier dis-
ruption induced by type 2 inflammation is essential. Alvas 
et al. demonstrated a definitive role for IL-13 signalling via 
IL-13Rα1 in the EoE mouse model. Moreover, single-cell RNA 
sequencing analysis of human EoE biopsies showed that EoE 
signature genes, such as downregulation of FLG, correlated 
with IL-13 expression compared with IL-4 (158). It has been 
reported that exposure to common detergents such as SDS 
triggers IL-33 production, decreasing oesophageal barrier 
integrity, epithelial hyperplasia, and tissue eosinophilia (15). 
The laundry detergents and SDS induced eosinophilic airway 

inflammation in vivo through increasing expression of IL-33 
from epithelial cells and ILC2 activation. In addition, deter-
gent residues were detected in house dust, suggesting that 
surfactants are inadvertently inhaled into the airway in daily 
life (81). AD is a most common type 2 chronic inflammatory 
skin disease characterized by loss of the skin’s barrier func-
tion. Recently, Zhang et al. (159) showed the clear hallmarks 
of type 2 inflammatory signatures by single-cell RNA-seq and 
TCR-seq in AD. In addition, RNA-seq profiles in tape-stripped 
skin samples identified dysregulation of barrier-related genes 
with increasing Th2 and Th22/Th17-related markers (160). 
Moreover, tape strips analysis by liquid chromatography, 
atomic force microscopy, multiplex immunoassay, and liquid 
chromatography mass spectrometry showed that children 
who develop AD have higher levels of sphingoid base chain 
length and TARC/CCL17 levels (161). Spatial transcriptomics 
in the lesional AD skin demonstrates the distribution of im-
mune cells such as CCL17-expressing dendritic cells (DCs) 
and the detailed cell–cell interactions in the leukocyte-
infiltrated area in the lesional AD skin (162). In AD patho-
genesis, microbial dysbiosis also plays a crucial role since 
the skin microbiota helps maintain the epithelial barrier per-
meability. Dysbiosis of the skin microbiota and opportunistic 
bacteria colonization is common in AD (163). Recent studies 
found that the opportunistic pathogen S. aureus was shown 
to cause barrier damage via disruption of the lipid compos-
ition, which is crucial for skin barrier integrity and causing 

Figure 2. Epithelial barrier-damaging substances cause a vicious cycle. These substances cause epithelitis characterized by an impaired 
epithelial barrier and by inflammation. Loss of epithelial barrier integrity allows translocation of microbiota to the subepithelial tissues. Ongoing 
inflammation and epithelial barrier damage lead to dysbiosis and opportunistic pathogen colonization. This triggers the expulsion response, 
which is the activation of the immune system against allergens, microbes, and environmental substances, to expel them from the subepithelial 
area. Ultimately, this vicious cycle gives rise to chronic tissue inflammation and defective epithelial barrier healing through epigenetic regulation 
mechanisms.
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inflammation in skin (116, 161, 164, 165). Interestingly, Stuvel 
et al. (166) reported that a rare autosomal disease, Comel-
Netherton syndrome, which is characterized by a severe skin 
disease, atopic diathesis and increased susceptibility for skin 
infection, is a result of skin barrier disruption rather than an 
underlying immunodeficiency of the patient.

Systemic diseases with gut or lung barrier defect and 

dysbiosis

In this group, barrier dysfunction in mucosal tissues allows 
activated pathogenic immune cells to migrate to the af-
fected organs. For example, fatty liver disease, including 
non-alcoholic fatty liver diseases (NAFLD), and non-alcoholic 
steatohepatitis (NASH), have been coupled with increased 
intestinal barrier permeability and translocation of bacteria 
into the blood circulation. Linked to this group, Mouries et al. 
(167, 168) reported that the impairment of the gut vascular 
barrier leads to bacteria translocation into the bloodstream, 
contributing to NASH development.

Obesity is also an important condition in this group. 
Obesity impairs the structural and functional integrity of the 
oesophageal barrier, leading to oesophageal injury (169). A 
high-calorie and fat-enriched diet affects gut permeability 
and TJ restructuring in the mouse model (170). Obesity may 
increase susceptibility to multiple organ disorders through 
these barrier dysfunctions.

Neuropsychiatric diseases with gut or lung barrier defect 

and dysbiosis

In the past years, the concept of the gut–brain axis has started to 
emerge (141, 142). Individuals diagnosed with autism spectrum 
disorder exhibit altered gut permeability attributed to diminished 
expression of TJ proteins (138). Indeed, in autism spectrum dis-
order, blood–brain barrier-related CLDN-5 and CLDN-12 are in-
creased in the brain. In addition, 75% of the autism spectrum 
disorder samples had reduced expression of TJ family compo-
nents, such as CLDN-1, OCLN, and TRIC (138). Evidence sug-
gests that acute stress can disrupt the intestinal barrier in animal 
models (142). Depression has been associated with reduced 
richness and diversity of gut microbiota. Patients experiencing 
chronic depression frequently manifest microbial dysbiosis, 
bacterial translocation in the gut, and an inflammatory response 
to commensal bacteria (143, 171).

Conclusion

In this era, where human activities have significantly altered 
the environment of our world, causing considerable harm to 
human health, it is imperative that we prioritize theories that 
elucidate disease mechanisms and embrace technologies 
developed within the framework of emerging paradigms. The 
epithelial barrier theory, one of the prominent explanations for 
the development of allergic diseases, has garnered significant 
support through recent research. With ongoing studies, our 
understanding of how environmental factors disrupt the epi-
thelial barrier continues to expand. The evidence presented 
in this review emphasizes that the disruption of epithelial bar-
rier integrity plays a pivotal role in driving microbial dysbiosis, 
pathological bacterial colonization, immune responses to both 

opportunistic pathogens, and commensals, as well as tissue 
inflammation. This cascade of pathological events resulting 
from epithelial barrier damage significantly contributes to the 
onset of allergic diseases, autoimmune disorders, and meta-
bolic conditions. To address these challenges, urgent action 
is required to raise public awareness and implement regula-
tions governing the use of chemicals in both industrial and 
household products, with a focus on minimizing exposure to 
toxic substances that harm epithelium. Additionally, there is 
a pressing need to explore innovative therapeutic and pre-
ventive strategies targeting epithelial barrier impairment and 
its subsequent pathological consequences.
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