57 research outputs found
KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS-mutation and bone metastasis
Current guidelines lack comprehensive information on the metastatic site-specific role of KRAS mutation in lung adenocarcinoma (LADC). We investigated the effect of KRAS mutation on overall survival (OS) in this setting. In our retrospective study, 500 consecutive Caucasian metastatic LADC patients with known KRAS mutational status were analyzed after excluding 32 patients with EGFR mutations. KRAS mutation incidence was 28.6%. The most frequent metastatic sites were lung (45.6%), bone (26.2%), adrenal gland (17.4%), brain (16.8%), pleura (15.6%) and liver (11%). Patients with intrapulmonary metastasis had significantly increased KRAS mutation frequency compared to those with extrapulmonary metastases (35% vs 26.5%, p=0.0125). In contrast, pleural dissemination and liver involvement were associated with significantly decreased KRAS mutation incidence (vs all other metastatic sites; 17% (p<0.001) and 16% (p=0.02) vs 33%, respectively). Strikingly, we found a significant prognostic effect of KRAS status only in the bone metastatic subcohort (KRAS-wild-type vs KRAS-mutant; median OS 9.7v 3.7 months; HR, 0.49; 95% CI, 0.31 to 0.79; p =0.003). Our study suggests that KRAS mutation frequency in LADC patients shows a metastatic site dependent variation and, moreover, that the presence of KRAS mutation is associated with significantly worse outcome in bone metastatic cases.(VLID)469049
Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States
Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections
Negative feedback regulation of the ERK1/2 MAPK pathway
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance
- …