169 research outputs found

    Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory

    Get PDF
    We show that the scattering interaction between a high energy electron and a photon can be strongly enhanced by different types of localized plasmons in a non-trivial way. The scattering interaction is predicted by an eigen-response theory, numerically verified by finite-difference-time-domain simulation, and experimentally verified by cathodoluminescence spectroscopy. We find that the scattering interaction associated with dark plasmons can be as strong as that of bright plasmons. Such a strong interaction may offer new opportunities to improve single-plasmon detection and high-resolution characterization techniques for high quality plasmonic materials.Comment: 4 pages, 4 figures (excluding Supporting Information

    Threshold features in transport through a 1D constriction

    Full text link
    Suppression of electron current ΔI \Delta I through a 1D channel of length LL connecting two Fermi liquid reservoirs is studied taking into account the Umklapp electron-electron interaction induced by a periodic potential. This interaction causes Hubbard gaps EHE_H for LL \to \infty. In the perturbative regime where EHvc/LE_H \ll v_c/L (vc:v_c: charge velocity), and for small deviations δn\delta n of the electron density from its commensurate values ΔI/V- \Delta I/V can diverge with some exponent as voltage or temperature V,TV,T decreases above Ec=max(vc/L,vcδn)E_c=max(v_c/L,v_c \delta n), while it goes to zero below EcE_c. This results in a nonmonotonous behavior of the conductance.Comment: Final variant published in PRL, 79, 1714; minor correction

    Is there a d.c. Josephson Effect in Bilayer Quantum Hall Systems?

    Full text link
    We argue on the basis of phenomenological and microscopic considerations that there is no d.c. Josephson effect in ordered bilayer quantum Hall systems, even at T=0. Instead the tunnel conductance is strongly enhanced, approaching a finite value proportional to the square of the order parameter as the interlayer tunneling amplitude vanishes.Comment: 5 pages, 2 figure

    Interfacial Profile and Propagation of Frontal Photopolymerization Waves

    Get PDF
    We investigate the frontal photopolymerization of a thiol–ene system with a combination of experiments and modeling, focusing on the interfacial conversion profile and its planar wave propagation. We spatially resolve the solid-to-liquid front by FT-IR and AFM mechanical measurements, supplemented by differential scanning calorimetry. A simple coarse-grained model is found to describe remarkably well the frontal kinetics and the sigmoidal interface, capturing the effects of UV light exposure time (or dose) and temperature, as well as the front position and resulting patterned dimensions after development. Analytical solutions for the conversion profile enable the description of all conditions with a single master curve in the moving frame of the front position. Building on this understanding, we demonstrate the design and fabrication of gradient polymer materials, with tunable properties <i>along</i> the direction of illumination, which can be coupled with lateral patterning by modulated illumination or grayscale lithography

    Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters

    Get PDF
    A metal-organic hybrid perovskite (CH3NH3PbI3) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal–organic hybrid materials, a highly orientated film of (CH3NH3)3Bi2I9 with nanometre-sized core clusters of Bi2I93− surrounded by insulating CH3NH3+ was prepared via solution processing. The (CH3NH3)3Bi2I9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Publisher PDFPeer reviewe
    corecore